期刊文献+

扩孔金属有机骨架UiO-66的制备及其光催化还原六价铬性能 被引量:1

Preparation of expanded metal organic framework UiO-66 and its photocatalytic reduction of hexavalent chromium
下载PDF
导出
摘要 金属有机骨架孔径较小(1~2 nm),在水处理中应用受到了很大的限制。针对这一问题,采用水热法,利用十二烷酸作调节剂对UiO-66进行扩孔,制备了微孔-介孔UiO-66(HP-UiO-66),并通过X射线衍射、透射电子显微镜、漫反射光谱和比表面积测试等对其进行了系统表征。结果表明,加入调节剂后,成功地将UiO-66的孔径由1.68 nm扩大至4.29 nm;反应210 min后,扩孔后的UiO-66光催化还原六价铬的效率为99.9%,与UiO-66相比,其光催化还原六价铬的效率明显提高。光催化效率提高归因于扩孔使催化剂内部的活性点位得以利用,并且改性后的UiO-66的光吸收带边发生了红移,能产生更多的光生电子,从而光催化还原性能得到了提高。 The application of MOFs in water treatment has been greatly restricted due to its small pore size(1-2 nm).To solve this problem,microporous-mesoporous UiO-66(HP-UiO-66)was fabricated by the hydrothermal method using dodecanoic acid as a regulator.The sample was characterized by X ray diffraction,transmission electron microscope,diffuse reflection spectroscopy and specific surface area tests.The results showed that the pore size of UiO-66 was successfully enlarged from 1.68 to 4.29 nm after adding the regulator.After 210 min illumination,the photocatalytic reduction ratio of Cr(Ⅵ)by UiO-66 after expansion was 99.9%.The photocatalytic reduction efficiency of Cr(Ⅵ)was significantly improved compared with the UiO-66 sample which not been enlarged pore size.The enhanced photocatalytic reduction ability could be attributed to the availability of active sites in the pore after pore expansion.And the red-shifted band gap edge could help expanded pore UiO-66 absorb more light and generate more electrons,which ultimately elevate the photocatalytic reduction ability.
作者 杨羽佳 张秀芳 王冠龙 YANG Yujia;ZHANG Xiufang;WANG Guanlong(School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China)
出处 《大连工业大学学报》 CAS 北大核心 2021年第6期407-410,共4页 Journal of Dalian Polytechnic University
基金 国家自然科学基金项目(21906013) 辽宁省自然科学基金项目(2020-MZLH-38).
关键词 UiO-66 扩孔 金属有机骨架 光催化剂 六价铬 UiO-66 hole expansion metal organic framework photocatalyst hexavalent chromium
  • 相关文献

参考文献1

二级参考文献8

  • 1Bétard A,Fischer R A. Metal-organic framework thin films:from fundamentals to applications[J].Chemical Reviews,2012,(02):1055-1083.
  • 2Shekhah O,Liu J,Fischer R A. MOF thin films:existing and future applications[J].Chemistry Society Review,2011.1081-1106.
  • 3Shah M,McCarthy M C,Sachdeva S. Current status of metal-organic framework membranes for gas separations:promises and challenges[J].Industrial and Engineering Chemistry Research,2012,(05):2179-2199.
  • 4Gascon J,Kapteijn F. Metal-organic framework membranes:high potential,bright future[J].Angewandte Chemie International Edition,2010,(09):1530-1532.
  • 5Hu Y,Dong X,Nan J. Metal-organic framework membranes fabricated via reactive seeding[J].Chemical Communications,2011.737-739.
  • 6Loiseau T,Lecroq L,Volkringer C. MIL-96,a porous aluminum trimesate 3D structure constructed from a hexagonal netwonk of 18-membered rings and μ3-oxo-centered trinuclear units[J].Journal of the American Chemical Society,2010,(31):10223-10230.
  • 7Nan J,Dong X,Wang W. Formation mechanism of metal-organic framework membranes derived from reactive seeding approach[J].Microporous and Mesoporous Materials,2012.90-98.
  • 8Lee J S,Jhung S H. Vapor-phase adsorption of alkylaromaties on aluminum-trimesate MIL-96:an unusual increase of adsorption capacity with temperature[J].Microporous and Mesoporous Materials,2010,(1/2):274-277.

共引文献2

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部