期刊文献+

一种基于MLWE的同态内积方案 被引量:1

MLWE-based Homomorphic Inner Product Scheme
下载PDF
导出
摘要 同态内积在安全多方几何计算、隐私数据挖掘、外包计算、可排序的密文检索等场景有广泛的应用.但现有的同态内积计算方案大多是基于RLWE的全同态加密方案,普遍存在效率不高的问题.在柯程松等人提出的基于MLWE的低膨胀率加密算法基础上,提出了一种同态内积方案.首先给出了密文空间上的张量积运算⊗,该密文空间上的运算对应明文空间上的整数向量内积运算;然后分析了方案的正确性与安全性;最后给出了两种优化的加密参数,对应计算两种不同大小的整数向量同态内积的应用场景.通过C++与大整数计算库NTL实现了该方案.对比其他同态加密方案,该方案能够比较高效地计算整数向量的同态内积. The homomorphic inner product has a wide range of applications such as secure multi-geometry calculation,private data mining,outsourced computing,and sortable ciphertext retrieval.However,the existing schemes for calculating the homomorphism inner product are mostly based on FHE by RLWE with low efficiency.With MLWE,this study proposes a homomorphic inner product scheme by using a low expansion rate encryption algorithm proposed by Ke,et al.Firstly,the tensor product operation in the cipher space is given,which corresponds to the integer vector product operation in the plaintext space.Then,the correctness and security of the scheme are analyzed.At last,two sets of optimized encryption parameters are given,corresponding to the different application scenarios of homomorphic inner product.The scheme of this study is implemented by C++and the large integer computation library NTL.Compared with other homomorphic encryption schemes,this scheme can efficiently calculate the homomorphism inner products of integer vectors.
作者 柯程松 吴文渊 冯勇 KE Cheng-Song;WU Wen-Yuan;FENG Yong(Chongqing Key Laboratory of Automated Reasoning and Cognition(Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences),Chongqing 400714,China;College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《软件学报》 EI CSCD 北大核心 2021年第11期3596-3605,共10页 Journal of Software
基金 国家自然科学基金(11671377) 重庆市院士专项(cstc2017zdcy-yszxX0011,cstc2018jcyj-yszxX0002)。
关键词 MLWE 同态内积 安全多方计算 MLWE homomorphic inner product secure multi-party computation
  • 相关文献

参考文献1

二级参考文献3

共引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部