期刊文献+

基于深度学习的多特征彩色图像边缘特征提取 被引量:6

Edge Feature Extraction of Multi Feature Color Image Based on Deep Learning
下载PDF
导出
摘要 传统彩色图像边缘特征提取仅利用中层次与低层次信息,边缘特征提取效果不佳,为此,提出一种可利用高层次信息的多特征彩色图像边缘特征提取方法。经验证,所提方法对彩色图像边缘特征提取效果最好,对彩色图像边缘检测的精度最高。 Traditional color image edge feature extraction only uses medium and low-level information, and the effect of edge feature extraction is poor. Therefore, a multi feature color image edge feature extraction method using high-level information is proposed. After verification, the proposed method has the best effect on color image edge feature extraction and the highest accuracy for color image edge detection.
作者 付学佳 FU Xue-jia(The Engineering&Technical College of Chengdu University of Technology,Leshan 614000 China)
出处 《自动化技术与应用》 2021年第12期89-93,共5页 Techniques of Automation and Applications
关键词 深度学习 多特征 彩色图像 边缘特征 提取 deep learning multi feature color image edge feature extraction
  • 相关文献

参考文献9

二级参考文献68

  • 1朱月妹,袁浩斌,陈雷.老年人跌倒危险因素的调查[J].护理实践与研究,2007,4(10):5-7. 被引量:23
  • 2Femdndez-Delgado M, Cemadas E,Barro S, et al. Dowe Need Hundreds of Classifiers to Solve Real WorldClassification Problems? [J]. Journal of MachineLearning Research (SI 532-4435), 2014, 15(1):3133-3181.
  • 3Joachims T. Making Large-scale Support VectorMachine Learning Practical [C]// Advances in kernelmethods. USA: MIT Press, 1999: 169-184.
  • 4Harada T, Ushiku Y,Yamashita Y,et al. DiscriminativeSpatial Pyramid [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1617-1624.
  • 5S 6 nchez J, Perronnin F, Mensink T, et al. ImageClassification with the Fisher Vector; Theory andPractice [J]. International Journal of Computer Vision(S0920-5691), 2013, 105(3): 222-245.
  • 6Zhang C, Liu J, Tian Q, et al. Image Classification byNon-negative Sparse Coding, Low-rank and SparseDecomposition [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1673-1680.
  • 7Boureau Y L, Bach F, LeCun Y,et al. Learningmid-level features for recognition[C]//Computer Visionand Pattern Recognition (CVPR), 2010 IEEEConference on. USA:IEEE,2010: 2559-2566.
  • 8Lecun Y, Kavukcuoglu K, Farabet C. ConvolutionalNetworks and Applications in Vision [C]// Circuits andSystems (ISCAS), Proceedings of 2010 IEEEInternational Symposium on. USA: IEEE, 2010: 253-256.
  • 9Bouvrie J. Notes on Convolutional Neural Networks[R]// MIT-CBCL Technical Reports. Germany: SpringerInternational, 2006: 38-44.
  • 10Fischer A, Igel C. Training Restricted BoltzmannMachines: An Introduction [J]. Pattern Recognition(S0031-3203), 2014, 47(1): 25-39.

共引文献232

同被引文献65

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部