期刊文献+

Visual information quantification for object recognition and retrieval 被引量:3

原文传递
导出
摘要 The rapid development of computer vision has led to an increasing amount of 3 D data,such as multiple views and point clouds,which are widely used in 3 D object recognition and retrieval.Intuitively,the quality of 3 D data is the most crucial factor that directly affects the performance of 3 D applications.However,how to evaluate the 3 D data quality,especially the multi-view data quality,is still an open question.To tackle this issue,we propose an entropy-based multi-view information quantification model(MV-Info model)to quantitatively evaluate the multi-view data information.Our proposed MV-Info model consists of hierarchical data module,feature generation module,and quantitative calculation module.Besides,it considers the information entropy theory for more reasonable quantification results.In our method,how much information we can observe from a group of views can be quantified,which can be used to support 3 D recognition and retrieval.We also designed a series of experiments to evaluate the effectiveness of the proposed model.The experimental results demonstrate the rationality and validity of the proposed model.
机构地区 School of Software
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第12期2618-2626,共9页 中国科学(技术科学英文版)
基金 the SGCC Science and Technology Project(Grant No.52020119000A)。
  • 相关文献

参考文献2

二级参考文献6

共引文献10

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部