期刊文献+

Convolution without multiplication:A general speed up strategy for CNNs 被引量:7

原文传递
导出
摘要 Convolutional Neural Networks(CNN)have achieved great success in many computer vision tasks.However,it is difficult to deploy CNN models on low-cost devices with limited power budgets,because most existing CNN models are computationally expensive.Therefore,CNN model compression and acceleration have become a hot research topic in the deep learning area.Typical schemes for speeding up the feed-forward process with a slight accuracy loss include parameter pruning and sharing,low-rank factorization,compact convolutional filters and knowledge distillation.In this study,we propose a general acceleration scheme that replaces the floating-point multiplication with integer addition.To this end,we propose a general accelerate scheme,where the floating point multiplication is replaced by integer addition.The motivation is based on the fact that every floating point can be replaced by the summation of an exponential series.Therefore,the multiplication between two floating points can be converted to the addition among exponentials.In the experiment section,we directly apply the proposed scheme to AlexNet,VGG,ResNet for image classification,and Faster-RCNN for object detection.The results acquired from ImageNet and PASCAL VOC show that the proposed quantized scheme has a promising performance,even with only one item of exponential.Moreover,we analyzed the eciency of our method on mainstream FPGAs.The experimental results show that the proposed quantized scheme can achieve acceleration on FPGA with a slight accuracy loss.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第12期2627-2639,共13页 中国科学(技术科学英文版)
基金 the National Natural Science Foundation of China(Grant Nos.41971424,61701191) the Key Technical Project of Xiamen Ocean Bureau(Grant No.18CZB033HJ11) the Natural Science Foundation of Fujian Province(Grant Nos.2019J01712,2020J01701) the Key Technical Project of Xiamen Science and Technology Bureau(Grant Nos.3502Z20191018,3502Z20201007,3502Z20191022,3502Z20203057) the Science and Technology Project of Education Department of Fujian Province(Grant Nos.JAT190321,JAT190318,JAT190315)。
  • 相关文献

同被引文献27

  • 1JIANG LiLi 1,QI QingWen 1,ZHANG An 1,GUO ChaoHui 2 & CHENG Xi 1,3 1 Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China,2 China Center for Resources Satellite Data and Applications,Beijing 100094,China,3Graduate University of Chinese Academy of Sciences,Beijing 100049,China.Improving the accuracy of image-based forest fire recognition and spatial positioning[J].Science China(Technological Sciences),2010,53(S1):184-190. 被引量:10
  • 2Xiang-Qun Cui,Yong-Heng Zhao,Yao-Quan Chu,Guo-Ping Li,Qi Li,Li-Ping Zhang,Hong-Jun Su,Zheng-Qiu Yao,Ya-Nan Wang,Xiao-Zheng Xing,Xin-Nan Li,Yong-Tian Zhu,Gang Wang,Bo-Zhong Gu,A-Li Luo,Xin-Qi Xu,Zhen-Chao Zhang,Gen-Rong Liu,Hao-Tong Zhang,De-Hua Yang,Shu-Yun Cao,Hai-Yuan Chen,Jian-Jun Chen,Kun-Xin Chen,Ying Chen,Jia-Ru Chu,Lei Feng,Xue-Fei Gong,Yong-Hui Hou,Hong-Zhuan Hu,Ning-Sheng Hu,Zhong-Wen Hu,Lei Jia,Fang-Hua Jiang,Xiang Jiang,Zi-Bo Jiang,Ge Jin,Ai-Hua Li,Yan Li,Ye-Ping Li,Guan-QunLiu,Zhi-Gang Liu,Huo-Ming Shi,Zheng-Hong Tang,Qing-Sheng Tao,Xiang-Yan Yuan,Chao Zhai,Jing Zhang,Yan-Xia Zhang,Yong Zhang,Ming Zhao,Fang Zhou,Guo-Hua Zhou,Jie Zhu,Si-Cheng Zou.The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)[J].Research in Astronomy and Astrophysics,2012,12(9):1197-1242. 被引量:40
  • 3A-Li Luo,Yong-Heng Zhao,Gang Zhao,Li-Cai Deng,Xiao-Wei Liu,Yi-Peng Jing,Gang Wang,Hao-Tong Zhang,Jian-Rong Shi,Xiang-Qun Cui,Yao-Quan Chu,Guo-Ping Li,Zhong-Rui Bai,Yue Wu,Yan Cai,Shu-Yun Cao,Zi-Huang Cao,Jeffrey L.Carlin,Hai-Yuan Chen,Jian-Jun Chen,Kun-Xin Chen,Li Chen,Xue-Lei Chen,Xiao-Yan Chen,Ying Chen,Norbert Christlieb,Jia-Ru Chu,Chen-Zhou Cui,Yi-Qiao Dong,Bing Du,Dong-Wei Fan,Lei Feng,Jian-Ning Fu,Peng Gao,Xue-Fei Gong,Bo-Zhong Gu,Yan-Xin Guo,Zhan-Wen Han,Bo-Liang He,Jin-Liang Hou,Yong-Hui Hou,Wen Hou,Hong-Zhuan Hu,Ning-Sheng Hu,Zhong-Wen Hu,Zhi-Ying Huo,Lei Jia,Fang-Hua Jiang,Xiang Jiang,Zhi-Bo Jiang,Ge Jin,Xiao Kong,Xu Kong,Ya-Juan Lei,Ai-Hua Li,Chang-Hua Li,Guang-Wei Li,Hai-Ning Li,Jian Li,Qi Li,Shuang Li,Sha-Sha Li,Xin-Nan Li,Yan Li,Yin-Bi Li,Ye-Ping Li,Yuan Liang,Chien-Cheng Lin,Chao Liu,Gen-Rong Liu,Guan-Qun Liu,Zhi-Gang Liu,Wen-Zhi Lu,Yu Luo,Yin-Dun Mao,Heidi Newberg,Ji-Jun Ni,Zhao-Xiang Qi,Yong-Jun Qi,Shi-Yin Shen,Huo-Ming Shi,Jing Song,Yi-Han Song,Ding-Qiang Su,Hong-Jun Su,Zheng-Hong Tang,Qing-Sheng Tao,Yuan Tian,Dan Wang,Da-Qi Wang,Feng-Fei Wang,Guo-Min Wang,Hai Wang,Hong-Chi Wang,Jian Wang,Jia-Ning Wang,Jian-Ling Wang,Jian-Ping Wang,Jun-Xian Wang,Lei Wang,Meng-Xin Wang,Shou-Guan Wang,Shu-Qing Wang,Xia Wang,Ya-Nan Wang,You Wang,Yue-Fei Wang,You-Fen Wang,Peng Wei,Ming-Zhi Wei,Hong Wu,Ke-Fei Wu,Xue-Bing Wu,Yu-Zhong Wu,Xiao-Zheng Xing,Ling-Zhe Xu,Xin-Qi Xu,Yan Xu,Tai-Sheng Yan,De-Hua Yang,Hai-Feng Yang,Hui-Qin Yang,Ming Yang,Zheng-Qiu Yao,Yong Yu,Hui Yuan,Hai-Bo Yuan,Hai-Long Yuan,Wei-Min Yuan,Chao Zhai,En-Peng Zhang,Hua-Wei Zhang,Jian-Nan Zhang,Li-Pin Zhang,Wei Zhang,Yong Zhang,Yan-Xia Zhang,Zheng-Chao Zhang,Ming Zhao,Fang Zhou,Xu Zhou,Jie Zhu,Yong-Tian Zhu,Si-Cheng Zou,Fang Zuo.The first data release(DR1) of the LAMOST regular survey[J].Research in Astronomy and Astrophysics,2015,15(8):1095-1124. 被引量:29
  • 4杨喜军,程慧,张涛.大长径比固体发动机侵蚀燃烧影响研究[J].战术导弹技术,2018(2):102-106. 被引量:3
  • 5王立武,田维平,郭运强,林志远.固体火箭发动机喷管喉衬烧蚀研究进展[J].固体火箭技术,2019,42(2):135-142. 被引量:18
  • 6邓恒,刘豪,严鸥鹏,李卫鹏,康鹏超,武高辉,惠卫华,刘旸.石墨/AlSi耗散防热材料喉衬烧蚀试验研究[J].固体火箭技术,2020,43(1):66-71. 被引量:1
  • 7LIANG Ye,LU Shuai,WENG Rui,HAN ChengZhe,LIU Ming.Unsupervised noise-robust feature extraction for aerial image classification[J].Science China(Technological Sciences),2020,63(8):1406-1415. 被引量:4
  • 8李媛,周艳青,孙展鹏,孙迪,马亮.固体发动机喷管喉径烧蚀辨识技术[J].弹箭与制导学报,2020,40(2):60-62. 被引量:1
  • 9YUAN JianHua,WU Yang,LU Xin,ZHAO YanYan,QIN Bing,LIU Ting.Recent advances in deep learning based sentiment analysis[J].Science China(Technological Sciences),2020,63(10):1947-1970. 被引量:10
  • 10夏鼎,徐文涛.基于生成对抗网络合成噪声的语音增强方法研究[J].电子技术应用,2020,46(11):56-59. 被引量:5

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部