摘要
基于时空大数据的城市地下空间结构安全服役智慧感知与性态演化预测,是提升地下工程全生命周期安全保障的重要手段,是基础设施由信息化向智能化发展的基础理论与核心技术。目前,我国地下空间开发迅速,已历经三个发展阶段并逐步形成了网络化,未来将形成立体化的城市布局。但地下空间结构安全感知与演化预测技术在实际应用中还存在诸多问题,地下空间结构建设与安全运营依然面临诸多挑战。本文立足于地下空间安全管理中的实际问题,分析了现有地下空间结构安全感知与演化预测技术的优缺点以及未来面临的挑战,在深入分析现有地下空间结构安全感知与演化预测技术发展趋势基础上,提出了所面临的关键科学问题,并针对地下空间结构安全感知与演化预测提出了相应的研究思路与对策。
The intelligent perception and prediction of behavior evolution based on spatio-temporal big data analysis of urban underground space structure have not only played an important role in guaranteeing the lifelong security of underground engineering,but also contributed a lot to the new infrastructure construction in China.In recent years,the rapidly exploitation of underground space in our country has gone through three stages and has gradually formed a network.In the future,the underground space of the city with be developed to deeper area and form a three-dimensional urban layour.However,there are still plentiful problems and challenges in the application of intelligent perception and evolution prediction technology.In addition,the underground space construction as well as safely structure still face many challenges.Based on the partical problewm in underground space security management,this paper summarizes the advantages and disadvantages of current researches as well as the corresponding research ideas and countermeasures for the intelligent perception and evolution prediction for urban underground space structure to fill this gap.
作者
杜彦良
杜博文
徐飞
孙磊磊
叶俊辰
李林超
Du Yanliang;Du Bowen;Xu Fei;Sun Leilei;Ye Junchen;Li Linchao(Institute of Urban Smart Transportation and Safety Maintenance,Shenzheng University,Shenzhen 518060;Key Laboratory of Large Structure Health Mojiitoring and Control,Shijiazhuang Tieclao University,Shijiazhuarig 050043;The State Key LaboratoryoJ Sojtuuure Development Environment,Beihang University.Beijiu,100191)
出处
《中国科学基金》
CSSCI
CSCD
北大核心
2021年第5期713-718,共6页
Bulletin of National Natural Science Foundation of China
基金
国家自然科学基金项目(51822802,51991395,71901011)
国家重点研发计划(2018YFB2101003)
深圳市海外高层次人才创新创业专项资金团队项目(KQTD20180412181337494)
河北省自然科学基金项目(E2019210356)的资助。
关键词
地下空间结构
时空大数据
状态感知
演化预测
underground space structures
spatio-temporal data
state awareness
evolution prediction