期刊文献+

生成对抗网络在虚拟试衣中的应用研究进展 被引量:4

Research progress on the application of generative adversarial network in virtual fitting
下载PDF
导出
摘要 生成对抗网络(GAN)的出色性能,使得深度学习在虚拟试衣中的应用得到新的发展,可以应对虚拟试衣中诸多问题和需求。GAN能够产生高度真实的输出,与原始训练分布非常接近,成为当下实现虚拟试衣不容忽视的工具。文章围绕这一研究前沿与热点问题,对GAN及其在虚拟试衣中的发展进行了简单的回顾;其次从GAN生成虚拟试衣结果的特征类别出发,先后介绍了在2D图像、3D模型及视频的虚拟试衣上的应用,总结分析了它们的运作机制、优点、局限性及适用场景;最后,讨论了GAN在虚拟试衣领域未来的研究方向。研究认为,未来可在增加试穿服装件数、提高试穿图像分辨率和准确性、提高视频试穿速度3个方向开展研究。 The excellent performance of Generative Adversarial Network(GAN)has facilitated the new development and application of deep learning in virtual fitting,which could deal with many problems and needs in virtual fitting.GAN is able to produce highly real output and is very close to the original training distribution,thus becoming a tool that can’t be ignored in the current virtual fitting.Firstly,focusing on this research frontier and hot issue,this paper briefly reviewed GAN and its development in virtual fitting;then,starting from the feature categories of virtual fitting results generated by GAN,the paper introduced its application in virtual fitting based on 2D image,3D model and video,summarized and analyzed the operation mechanism,advantages,limitations and applicable scenarios;finally,it prospected the future development direction of GAN in virtual fitting.It is believed that future research can be carried out in three directions:increasing the number of fitting clothing,raising the resolution and accuracy of fitting image,and improving the speed of video fitting speed.
作者 张颖 刘成霞 ZHANG Ying;LIU Chengxia(Zhejiang Province Engineering Laboratory of Clothing Digital Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology,Ministry of Culture and Tourism,Zhejiang Sci-Tech University,Hangzhou 310018,China;School of Fashion Design&Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《丝绸》 CAS CSCD 北大核心 2021年第12期63-72,共10页 Journal of Silk
基金 浙江省大学生科技创新活动计划暨新苗人才计划(2020R406084)。
关键词 虚拟试衣 生成对抗网络 深度学习 图像翻译网络 自我监督 virtual fitting generative adversarial network deep learning image-to-image translation network self-supervision
  • 相关文献

参考文献3

二级参考文献47

  • 1周超,胥朝阳,余海丽.服装网购中三维虚拟试衣问题研究[J].服饰导刊,2013,2(1):41-45. 被引量:11
  • 2李井辉,申静波.基于包围盒的碰撞检测技术研究[J].高校实验室工作研究,2006(4):31-34. 被引量:5
  • 3金国英,罗戎蕾.虚拟试衣系统技术构架研究[J].丝绸,2007,44(4):38-41. 被引量:9
  • 4张文斌,方方.服装人体工效学[M].上海:东华大学出版社,2008.
  • 5CORDIER F,SEO H,M-THALMANN N.Made-to-measure technologies for an online clothing store[J].IEEE Computer Graphics and Applications,2003,23(1):38-48.
  • 6WEIL J.The synthesis of cloth objects[J].Computer Graphics,1986,20 (4):49-54.
  • 7FEYNMAN C.Modeling the Appearance of Cloth[D].Massachuse:Massachusetts Institute of Technology,1986:55-63.
  • 8AGUI T,NAGAO Y,NAKAJMA M.An expression method of cylidrical cloth objects[J].Transactions of a Eletronics Information and Communications,1990,73 (7):1095-1097.
  • 9HINDS B K,MCCARTNEY J.Computer Aided Design of Garments Using Digitized 3D Surfaces[J].J Eng Manufacture,1992,206(3):199-206.
  • 10NG H N,GRIMSDALE R L.GEOFF-A Geometrical Editor for Fold Formation[C]//Lecture Notes in Computer Science,Berlin:Springer-verlag,1995:124-331.

共引文献36

同被引文献16

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部