期刊文献+

机器学习在数据分析中的实践与应用 被引量:4

Practice of machine learning in data analysis
下载PDF
导出
摘要 机器学习技术能够使机器从大量的数据中学习规律,从而对新的样本做出分类识别,或者对未来做出合理的预测。本文应用鸢尾花数据集介绍了机器学习应用于数据分析的一般流程,分析与比较了典型的机器学习数据分析方法,比如主成分分析、线性判别分析和K-Means聚类等方法,阐述了机器学习在数据分析中的实践与应用。 Machine learning enables machines to learn rules from large amounts of data,so as to classify new samples or make reasonable predictions about the future.This paper introduces the general process of machine learning applied to data analysis by using iris plants database,analyzes and compares typical machine learning methods in data analysis,such as principal component analysis,linear discriminant analysis and K-means clustering,and expounds the practice of m achine learning in data analysis.
作者 幸锋 刘兴旭 XING Feng;LIU Xing-xu(China Mobile Group Yunnan Co.,Ltd.,Kunming 650228,China;China Mobile Group Design Institute Co.,Ltd.,Beijing 100080,China)
出处 《电信工程技术与标准化》 2021年第12期82-84,88,共4页 Telecom Engineering Technics and Standardization
关键词 机器学习 数据分析 鸢尾花数据集 machine learning data analysis iris plants database
  • 相关文献

参考文献2

二级参考文献7

  • 1R.O.Duda,P.E.Hart,李宏东等译.模式分类(第2版).北京:机械工业出版社,2003.9.
  • 2C.M. Bishop. Pattern Recognition and Machine Learning,Springer,2006.
  • 3Sch lkopf B, Smola A, Mtiller K R. Kernel Principal Component Analysis [J]. Advance in Kernel Methods-Support Vector Learning, 2009,27(4) :555-559.
  • 4Ye Fei,Z. Shi,and Z. Shi. A Comparative Study of PCA, LDA and Kernel LDA for Image Classification. IEEE International Sympo- sium on Ubiquitous Virtual Reality, 2009:51-54.
  • 5Cands E J, Li X, Ma Y, et al. Robust Principal Component Analysis[J]. Journal of the ACM, 2011, 58 (3) :1-73.
  • 6Sugiyama M. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis [J]. Journal of Machine Learning Research, 2007,8 ( 1 ): 1027-1061.
  • 7Yan, Shuicheng, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. 1EEE Transaction on Pattern Analysis and Machine Intelligence, 2007,29 ( 1 ) :40-51.

共引文献167

同被引文献52

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部