期刊文献+

基于显著性的遥感图像舰船目标检测 被引量:2

Ship Target Detection Based on Saliency in Remote Sensing Image
下载PDF
导出
摘要 舰船作为海洋信息感知中的重要目标,其检测在军舰探测、精确制导等军用领域以及海面搜救、渔船监测等民用领域具有极其重要的战略意义。海洋遥感图像受云雾、风浪、海杂波和光照等干扰使得舰船检测具有挑战性。根据可见光遥感图像舰船目标检测特点提出粗检测和细鉴别相结合的技术路线。先基于视觉显著性的谱残差法对图像进行增强以提取目标候选区域,后根据舰船与干扰因素差异采用舰船方向梯度直方图特征对目标候选区域进行鉴别,提取真正的舰船目标。实验结果表明,上述算法舰船检测率高,对光照、海杂波干扰具有一定程度的鲁棒性,且能有效剔除碎云岛屿等干扰物,显著降低虚警率。 As an important target of marine information perception,ship detection has a very important strategic significance in the military fields such as warship detection,precise guidance,as well as the civilian fields such as sea search and rescue,fishing vessel monitoring and so on.Ocean remote sensing image is challenged by the interference of cloud,wave,sea clutter and light.In this paper,based on the characteristics of ship target detection in optical remote sensing images,the technology of rough detection and fine identification is proposed.Firstly,based on the spectral residual method of visual saliency,the image was enhanced to extract the target candidate area.Then,according to the difference between the ship and the interference factors,the target candidate area was identified by using the ship histogram of oriented gradient(S-HOG)feature to extract the real ship target.The experimental results show that the algorithm has a high detection rate of ships,a certain degree of robustness to the interference of light and sea clutter,and can effectively eliminate the interference such as broken cloud islands,and significantly reduce the false alarm rate.
作者 丁荣莉 李杰 沈霁 周飞宇 DING Rong-li;LI Jie;SHEN Ji;ZHOU Fei-yu(Shanghai Academy of Spaceflight Technology,Shanghai 201109,China)
出处 《计算机仿真》 北大核心 2021年第11期5-8,52,共5页 Computer Simulation
关键词 遥感图像 舰船检测 显著性 目标候选区域 舰船方向梯度直方图 Remote sensing image Ship detection Visual saliency Target candidate area S-HOG
  • 相关文献

参考文献2

二级参考文献18

  • 1Eldhuset K. An Automatic Ship and Ship Wake Detection System for Spaceborne SAR Images in Coastal Regions [J]: IEEE Transactions on Geoseience and Remote Sensing, 1996,34(4) : 1010 - 1019.
  • 2Lu Y, Yu Y J, Huang S J. CFAR Detection for K- Distributed Multi-Looked SAR Image[C]//The Record of the IEEE 2000 International Radar Conference, 07 - 12 May, 2000, Alexandria, VA:284-288.
  • 3Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(11) : 1254 - 1259.
  • 4Guo C L, Ma Q, Zhang L M. Spati:>Temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform[C]//IEEE Conference on Computer Vision and Pattern Recognition, 23- 28 June, 2008, Anchorage, AK:1 - 8.
  • 5Achanta R, Hemami S, Estrada F, et al. Frequency- Tuned Salient Region Detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 20 - 25 June, 2009, Miami, FL: 1597 - 1604.
  • 6Hou X D, Zhang L Q. Saliency Detection: A Spectral Residual Approach[C]//IEEE Conference on Computer Vision and Pattern Recognition, 17 - 22 June, 2007, Minneapolis, MN: 1 - 8.
  • 7Ito I, Kiya H. Modified Phase-Only Correlation Using the Sign of DCT Coefficients with Application to Image Matching[J]. EICE Technical Report. ImageEngineering, 2007,106(448) : 163 - 168.
  • 8Hou X D, Jonathan H, Christof K. Image Signature: Highlighting Sparse Salient Regions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(1) : 194 - 201.
  • 9王楠,王晅,赵杰,何冰.一种基于小波变换和DCT量化的彩色图像盲水印算法[J].沈阳大学学报,2008,20(3):96-98. 被引量:4
  • 10田明辉,万寿红,岳丽华.遥感图像中复杂海面背景下的海上舰船检测[J].小型微型计算机系统,2008,29(11):2162-2166. 被引量:24

共引文献56

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部