摘要
针对轮式移动机器人(WMR)的轨迹跟踪问题,首先根据WMR非线性模型设计了区间二型模糊逻辑控制器(IT2FLC);其次针对IT2FLC模糊规则中隶属函数参数难以确定问题,通过改进的量子粒子群算法(SelQPSO)优化IT2FLC的隶属函数参数。最后,将经过SelQPSO优化的IT2FLC控制效果分别与经过量子粒子群算法(QPSO)优化的IT2FLC、未经优化的IT2FLC以及T1FLC算法进行对比。此外,进一步考虑外部扰动分别对四种控制方法控制效果的影响。仿真结果表明,与另外三种控制方法相比,经过SelQPSO优化的IT2FLC具有更好的控制效果和抗干扰能力。
Aiming at the trajectory tracking problem of wheeled mobile robot(WMR), firstly, an interval-type fuzzy logic controller(IT2 FLC) was designed based on the WMR nonlinear model;Secondly, in view of the difficulty in determining the membership function parameters in IT2 FLC fuzzy rules, the membership function parameters of IT2 FLC were optimized by an improved quantum particle swarm algorithm(SelQPSO). Finally, the effects of IT2 FLC control optimized by SelQPSO were compared with those of IT2 FLC optimized by quantum particle swarm optimization(QPSO), IT2 FLC without optimization, and T1 FLC algorithm. In addition, the effects of external disturbances on the control effects of the four control methods were further considered. The simulation results show that compared with the other three control methods, IT2 FLC optimized by SelQPSO has better control effect and anti-interference ability.
作者
结昆仑
赵涛
佃松宜
JIE Kun-lun;ZHAO Tao;DIAN Song-yi(School of Electrical Engineering,Sichuan University,Chengdu Sichuan 610065,China)
出处
《计算机仿真》
北大核心
2021年第11期340-347,共8页
Computer Simulation
基金
四川省科技厅应用基础研究项目(2016JY0085)。
关键词
二型模糊逻辑控制器
隶属函数
量子粒子群
移动机器人
Type II fuzzy logic controller
Membership function
Quantum particle swarm
Move robot