摘要
文章在删失指标随机缺失下,当协变量为多维时,分别构造了条件分布函数的加权双核局部线性校准估计、插值估计以及逆概率估计;进一步,利用这些估计导出了条件分位数的相应估计,并建立了这些估计的渐近正态性结果;最后,通过模拟分析了这些估计在有限样本数据下的渐近性质.
In this paper,we construct a weighted double-kernel local linear calibration estimator,an imputation estimator and an inverse probability estimator of conditional distribution function when censoring indicators are missing at random and covariates are multidimensional.Furthermore,the corresponding estimators of conditional quantiles are derived by using these estimators,and the asymptotic normality results of these estimators are established.Finally,the simulation studies are conducted to illustrate the finite sample performance of the estimators.
作者
王江峰
李国定
郦颖蕾
熊怡
WANG Jiangfeng;LI Guoding;LI Yinglei;XIONG Yi(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018)
出处
《系统科学与数学》
CSCD
北大核心
2021年第9期2621-2642,共22页
Journal of Systems Science and Mathematical Sciences
基金
国家社会科学基金(20BTJ049)资助课题。
关键词
删失指标
随机缺失
条件分位数
局部线性估计
渐近正态性
Censoring indicator
missing at random
conditional quantile
local linear estimator
asymptotic normality