期刊文献+

基于LSTM的高校建筑电力负荷预测方法 被引量:2

Power Load Forecast Method for University Buildings Based on LSTM
下载PDF
导出
摘要 提出一种基于长短时记忆网络(LSTM)的预测模型,以提高高校电力负荷预测的准确率。以某高校的电力负荷数据为研究对象,分析不同超参数的影响,确定最优的预测模型,并与常用的基于支持向量机(SVM)的负荷预测模型进行负荷预测对比。结果表明,本文提出的负荷预测模型平均绝对百分误差(MAPE)为:办公楼6.67%、科研楼4.32%、教学楼5.98%和宿舍4.57%,每类建筑均比基于SVM预测模型的MAPE低1.5%左右。 A forecast model based on long short term memory(LSTM)is proposed to improve the accuracy of power load forecast in university.Taking the power load data of a university as the research object,this paper analyzes the influence of different hyper-parameters,determines the optimal forecast model,and compares it with the commonly used load forecast model based on support vector machine(SVM).The results show that the mean absolute percentage error(MAPE)of the load forecast model proposed in this paper is 6.67%for office buildings,4.32%for scientific research buildings,5.98%for teaching buildings and 4.57%for dormitories.In addition,each type of building is about 1.5%lower than the MAPE based on SVM forecast model.
作者 满达 张卓凡 张金金 谢将剑 MAN Da;ZHANG Zhuofan;ZHANG Jinjin;XIE Jiangjian(Beijing Forestry University,Beijing 100083,China)
出处 《建筑电气》 2021年第11期58-63,共6页 Building Electricity
关键词 高校建筑 负荷预测 负荷特征 负荷曲线 长短时记忆网络 支持向量机 平均绝对百分误差 实验对比 university buildings load forecast load characteristics load curve LSTM support vector machine mean absolute percentage error experimental comparison
  • 相关文献

参考文献4

二级参考文献36

  • 1王玉龙,崔玉,李鹏,李锐.基于小波分析改进的神经网络模型电力系统负荷预测[J].电网与清洁能源,2015,31(2):16-20. 被引量:32
  • 2康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:499
  • 3邹政达,孙雅明,张智晟.基于蚁群优化算法递归神经网络的短期负荷预测[J].电网技术,2005,29(3):59-63. 被引量:46
  • 4马建伟,张国立.人工鱼群神经网络在电力系统短期负荷预测中的应用[J].电网技术,2005,29(11):36-39. 被引量:28
  • 5Chen B J,Chang M W,Lin C J.Load forecasting using support vector machines:a study on EUNITE competition 2001[J].IEEE transactions on power systems,2004.19 (4):1821-1830.
  • 6Company behind East-Slovakia Power Distribution Company.World-wide competition within the EUNITE network,EUNITE competiton report[R].
  • 7Leng G,Prasad G,McGinnity T M.An on-line algorithm for creating self-organizing fuzzy neural networks.Neural Networks,2004,(17):1477-1493.
  • 8Ortiz-Arroyo D,Skov M K,Huynh Q.Accurate Electricity Load Forecasting with Artificial Neural Networks[C].Proceedings of the 2005 International Conference on Computational Intelligence for Modelling,Control and Automation,and International Conference on Intelligent Agents,Web Technologies and Internet Commerce(CIMCA-IAWTIC' 05).2005.
  • 9Tao X.Input dimension reduction for load forecasting based on support vector machines[ C].Hong Kong:2004 IEEE International Conference of Electric Utility deregulation,restructuring and power technologies.2004.
  • 10Hsu C C.Dynamically Optimizing Parameters in Support Vector Regression-An Application of Electricity Load Forecasting[C].Hawaii:Proceedings of the 39th Hawaii International Conference on System Sciences.2006.

共引文献84

同被引文献29

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部