期刊文献+

先导化合物结构优化策略(九)——改善药物清除率

Lead compound optimization strategy(9)-reducing drug clearance through structure modification
原文传递
导出
摘要 清除率反映药物分子在体循环中被提取和消除的快慢程度。通过化学结构修饰方法降低化合物的清除率有助于改善化合物在体内的药代动力学和药效学性质。本文介绍了清除率的概念和研究意义,体内清除率的常见预测方法,重点综述了改善清除率的先导化合物结构优化策略,主要包括:通过降低亲脂性、封闭代谢位点、骨架修饰、增加位阻等方法降低肝脏代谢转化清除率;通过提高亲脂性、降低极性表面积、生物电子等排等方法降低胆汁排泄清除率或肾脏排泄清除率;最后总结了药物分子立体构型对清除率的影响。 Clearance reflects the speed of extraction and elimination of drug molecules from systemic circulation. Reducing the clearance of compounds using structure modification strategy could lead to good pharmacokinetic and pharmacodynamic properties. Herein, the concept of clearance, as well as several prediction methods of in vivo clearance are introduced. The strategies of reducing drug clearance are reviewed. These methods include reducing hepatic metabolic clearance through reducing lipophilicity, blocking metabolic site, scaffold modification and increasing steric hindrance;reducing biliary or renal excretion clearance through increasing lipophilicity, reducing polar surface area and bioisosterism. In addition, the influence of spatial configuration on drug clearance is also summarized.
作者 张蕊 王江 朱浩然 柳红 ZHANG Rui;WANG Jiang;ZHU Hao-ran;LIU Hong(State Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《药学学报》 CAS CSCD 北大核心 2021年第11期3030-3046,共17页 Acta Pharmaceutica Sinica
基金 国家自然科学基金资助项目(21632008)。
关键词 清除率 肝脏代谢 排泄 亲脂性 立体构型 clearance hepatic metabolism excretion lipophilicity chiral configuration
  • 相关文献

参考文献6

二级参考文献61

  • 1Lasser KE, Allen PD, Woolhandler SJ, et al. Timing of new black box warnings and withdrawals for prescription medications[J). JAm Med Ass, 2002, 287: 2215 -2220.
  • 2Nassar AEF, Kamel AM, Clarimont C. Improving the decision?making process in structural modification of drug candidates[J]. Drug Discov Today, 2004, 9: 1055 -1064.
  • 3Fieser LF. Carcinogenic activity, structure, and chemical reactivity of polynuclear aromatic hydrocarbons[J]. Am J Cancer, 1938,34: 37-124.
  • 4Kalgutkar AS, Soglia JR. Minimizing the potential for metabolic activation in drug discovery[J]. Expert Opin Drug Metab Toxicol, 2005, I: 91-142.
  • 5Matzinger P. The danger model: a renewed sense of self[J]. Science, 2002, 296: 301-305.
  • 6Hess DA, Sisson ME, Suria H, et al. Cytotoxicity of sulfonamide reactive metabolites: apoptosis and selective toxicity of CD8(+) cells by the hydroxylamine of sulfamethoxazole[J]. FASEB J, 1999, 13: 1688-1698.
  • 7Xu J], Diaz D, O'Brien PJ. Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential[J]. Chern Bioi Interact, 2004, 150: 115-128.
  • 8Pumford NR, Haimes NC. Protein targets of xenobiotic reactive intermediates[J]. Annu Rev Pharmacol Toxicol, 1997,37: 91-117.
  • 9Yuan L, Kaplowitz N. Glutathione in liver diseases and hepatotoxicity[J]. Mol Aspects Med, 2009, 30: 29 -41.
  • 10Jollow DJ, Mitchell JR, Potter WZ, et al. Acetaminophen?induced hepatic necrosis. 2. Role of covalent binding in vivo[J]. J Pharmacol Exp Ther, 1973, 187: 195 -202.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部