期刊文献+

纳米纤维素复合气凝胶的制备与性能研究 被引量:2

Research on the Preparation and Properties of Nanocellulose Composite Aerogels
原文传递
导出
摘要 针对当前纤维素气凝胶性能研究的不足,开展了纳米纤维素气凝胶的常规制备、复合改性,油脂吸附、吸声性能、力学性能、疏水性能、孔径分布等实验。结果表明:常规纤维素气凝胶超亲水,通过复合改性可具有超疏水性;油脂吸附能力突出,可达自身重量的30倍以上,且可以循环使用;在较宽的频率范围内吸声系数都高于0.6,最高接近0.9,优于市售常规吸声材料;采用BET、FTIR分析方法探索了纳米纤维素气凝胶性能优越的机理。纳米纤维素气凝胶适用于吸附、空气净化、建筑等多领域。 In order to further improve nanocellulose aerogel applications,we have investigated the preparation,composite modification,oil adsorption,sound absorption,mechanical engineering,hydrophobic analysis,and pore size distribution tests of nanocellulose aerogels.Cellulose aerogel is able to be superhydrophobic by composite modification even though it is super-hydrophilic normally.Its oil adsorption capacity is outstanding-adsorbing more than 30 times of its weight,as well as recycling.The sound absorption coefficient is over 0.6 in a wide frequency range with the highest number of 0.9,which is superior to the commercially conventional sound absorbing materials.The mechanism of superior performance was explored by BET,FTIR,and TG analysis.Nanocellulose aerogels are suitable for many fields,including adsorption,air purification,and construction.
作者 陈晓星 曾志文 陈伟 CHEN Xiao-xing;ZENG Zhi-wen;CHEN Wei(China Construction Science and Industry Corporation Ltd,Shenzhen 518054,China;State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070,China)
出处 《武汉理工大学学报》 CAS 北大核心 2020年第7期8-13,共6页 Journal of Wuhan University of Technology
关键词 纤维素气凝胶 吸附性能 二氧化硅 孔径分布 疏水性能 cellulose aerogels adsorption performance silica pore distribution hydrophobic property
  • 相关文献

参考文献3

二级参考文献45

  • 1黄黎明,陈赓良.二氧化碳的回收利用与捕集储存[J].石油与天然气化工,2006,35(5):354-358. 被引量:47
  • 2赵会玲,胡军,汪建军,周丽绘,刘洪来.介孔材料氨基表面修饰及其对CO_2的吸附性能[J].物理化学学报,2007,23(6):801-806. 被引量:54
  • 3Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: Chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010,110(6):3479-3500.
  • 4Moon R J,Martini A, Naim J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites [J]. ChemicalSociety Reviews, 2011,40(7): 3941-3994.Science, 2013,6(2):513-518.
  • 5Hu L B, Zheng G Y, Yao J, et al. Transparent and conductive paper from nanocellulose fibers[J]. Energy & Environmental Science, 2013, 6(2): 513-518.
  • 6Eichhom S J, Dufresne A, Aranguren M, et al. Review: Current international research into cellulose nanofibres andnanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33.
  • 7Henriksson M,Berglund L A, Isaksson P, et al. Cellulose nanopaper structures of high toughness [J]. Biomacromolecules, 2008,9(6): 1579-1585.
  • 8Lu P, Hsieh Y L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network[J]. Carbohydrate Polymers,2010,82(2): 329-336.
  • 9Lagerwall J P F, Schutz C, Salajkova M, et al. Cellulose nanocrystal-based materials: From liquid crystal self-assembly andglass formation to multifunctional thin films[J]. NPG Asia Materials, 2014, 6(1): e80 1-10.
  • 10Araki J, Wada M, Kuga S, et al. Birefringent glassy phase of a cellulose microcrystal suspension[J]. Langmuir, 2000, 16(6):2413-2415.

共引文献19

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部