期刊文献+

基于SDAE和双模型联合训练的低压用户窃电检测方法 被引量:10

Detection method of electricity theft for low-voltage users based on SDAE and double-model joint training
下载PDF
导出
摘要 用户窃电行为是电网企业运营管理的痛点,基于数据驱动的低压用户窃电检测是当前的重要发展方向。由于窃电数据集具有自身高维度且样本不平衡的特点,对窃电检测模型的拟合能力和泛化能力要求极高。为此,文章利用堆栈降噪自编码器对低压用户日用电量数据进行特征提取,通过挖掘数据的深层特征减少窃电产生的极端数据对检测模型的影响;进而提出逻辑回归与深度神经网络联合训练模型进行低压用户窃电检测,将逻辑回归模型的记忆能力与深度神经网络模型的泛化能力相结合,进一步提升窃电检测的精度。通过实际电网数据的实验仿真,从AUC值、准确率和召回值三个评价指标验证了所提出方法相对于传统机器学习算法具有明显的性能优势。 The behaviors of electricity theft have been continuously causing economic losses to the operation and management of power grid enterprises,while the detection of electricity theft for the data-driven low-voltage users is an important development direction at present.Due to the characteristics of high dimension and unbalanced sample in the data set of electricity theft,the fitting and generalization abilities of the detection model are highly required.On this basis,a method of detecting electricity theft by low-voltage users is proposed,which firstly uses the stacked de-noising auto encoder(SDAE)to extract the features from the daily power consumption data of low voltage users,and the influence of extreme data generated by electricity theft on the detection model is reduced by mining the deep characteristics of data.And then,a joint training model of logistic regression(LR)and deep neural network(DNN)is proposed to detect the electricity theft of low-voltage users,which combines the memory ability of LR model with the fitting and generalization abilities of DNN model to further improve the accuracy of electricity theft detection.Through the experimental simulation of actual power grid data,evaluation indicators of AUC value,accuracy rate,and recall value verify that the proposed method has obvious performance advantages over the traditional machine learning algorithm.
作者 招景明 唐捷 潘峰 杨雨瑶 林楷东 马键 Zhao Jingming;Tang Jie;Pan Feng;Yang Yuyao;Lin Kaidong;Ma Jian(Metrology Center of Guangdong Power Grid Co.,Ltd.,Guangzhou 510080,China;Guangdong Power Grid Corporation,Guangzhou 510699,China;Research Center of Smart Energy Technology,School of Electric Power,South China University of Technology,Guangzhou 510640,China)
出处 《电测与仪表》 北大核心 2021年第12期161-168,共8页 Electrical Measurement & Instrumentation
基金 南方电网有限公司科技项目(GDKJXM20198387) 国家自然科学基金资助项目(52177085)。
关键词 窃电检测 自编码器 逻辑回归 深度神经网络 联合训练 electricity theft detection auto encoder LR DNN joint training
  • 相关文献

参考文献12

二级参考文献200

  • 1Omid SADEGHIAN,Morteza NAZARI-HERIS,Mehdi ABAPOUR,S.Saeid TAHERI,Kazem ZARE.Improving reliability of distribution networks using plug-in electric vehicles and demand response[J].Journal of Modern Power Systems and Clean Energy,2019,7(5):1189-1199. 被引量:20
  • 2唐毅,江波,李红斌,陈贤顺.数字电能计量系统检定方法综述[J].电工技术学报,2013,28(S2):372-377. 被引量:38
  • 3杨盛春,贾林祥.神经网络内监督学习和无监督学习之比较[J].徐州建筑职业技术学院学报,2006,6(3):55-58. 被引量:5
  • 4李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 5R. Jiang, R. Lu, C. Lai, J. Luo, and X. Shen, Robust group key management with revocation and collusion resistance for scada in smart grid, in Proc. IEEE Globe Communication Conference (Globecom), 2013, pp. 824- 829.
  • 62012 India blackouts, http://en.wikipedia.org/wiki/Indiabla- ckout, 2013.
  • 7R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, EPPA: An efficient and privacy-preserving aggregation scheme for secure smart grid communications, IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp. 1621- 1631, 2012.
  • 8M. Wen, R. Lu, J. Lei, H. Li, X. Liang, and X. Shen, SESA: An efficient searchable encryption scheme for auction in emerging smart grid marketing, Security and Communication Networks, vol. 7, no. 1, pp. 234-244, 2014.
  • 9H. Li, X. Liang, R. Lu, X. Lin, H. Yang, and X. Shen, EPPDR: An efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid, IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1-10, 2013.
  • 10X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, UDP: Usage- based dynamic pricing with privacy preservation for smart grid, IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 141-150, 2013.

共引文献582

同被引文献119

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部