期刊文献+

通道式液体获取装置筛网低温力学特性研究 被引量:1

Study on cryogenic mechanical properties of screen mesh for channel liquid acquisition device
原文传递
导出
摘要 以荷兰斜纹编织筛网为研究对象,构建了三维模型,依据筛网空间结构推导出有效孔径计算公式,并对金属筛网的低温力学特性进行了数值计算分析,得到了低温推进剂充注预冷过程中筛网的单元结构热变形和应力的分布及变化情况。通过计算对比从293 K降温至20 K前后筛网孔隙率和有效孔径结构参数,发现304和316不锈钢筛网低温结构参数无明显差别;316不锈钢筛网在该降温过程中孔隙率和有效孔径的变化率与其编织密度有关,且变化率小于0.7%;降温过程中,筛网最大等效应力发生在纬线的扭曲处,且处于安全工作范围。 In this study,a three-dimensional model of the Dutch Twill Weave(DTW)screen was constructed and its mechanical properties were investigated.The formula of the pore diameter was derived from the spatial structure of the screen.The thermal deformation and stress distribution of the structural unit of DTW screen in the process of pre-cooling were obtained by numerically analyzing the mechanical properties of DTW screen.By comparing the void fraction and pore diameter before and after cooling from 293 K to 20 K,it is found that there is no significant difference between 304 and 316 stainless steel DTW screens;and the variations of the void fraction and pore diameter of 316 stainless steel DTW screen are related to the weave density with a change rate less than 0.7%.During the cooling process,the maximum equivalent stress of DTW screen occurs at the twist of the shute wires and it is in the scope of safety work.
作者 周勇瑞 朱庆春 耑锐 张鹏 Zhou Yongrui;Zhu Qingchun;Zhuan Rui;Zhang Peng(Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University,Shanghai 200240,China;Aerospace System Engineering Institute,Shanghai 201108,China)
出处 《低温与超导》 CAS 北大核心 2021年第11期25-31,共7页 Cryogenics and Superconductivity
基金 国家自然科学基金(51976117) 上海航天先进技术联合研究基金(USCAST2019-4)资助。
关键词 荷兰斜纹编织筛网 孔隙率 有效孔径 等效应力 Dutch Twill Weaves(DTW) Void fraction Pore diameter Equivalent stress
  • 相关文献

参考文献3

二级参考文献36

  • 1Street D, Wilhite A. A scalable orbital propellant depot design [ R]. Atlanta, USA: Georgia Institute of Technology, April 2006.
  • 2Chato D J. Cryogenic fluid transfer for exploration [ J ]. Cryogenics, 2008, 48 (5) : 206 - 209.
  • 3Chato D J. Technologies for refueling spacecraft on-orbit [ C ]. AIAA Space 2000 Conference and Exposition, Long Beach, USA, September 19 -21, 2000.
  • 4Dominick S. Orbital test results of a vaned liquid acquisition device[ C ]. The 30th Joint Propulsion Conference, Indianapolis, USA, June 27 -29, 1994.
  • 5Chato D J, Martin T A. Vented tank resupply experiment: flight test results [ J ]. Journal of Spacecraft and Rockets, 2006, 43 (5) : 1124 -1130.
  • 6Friend R B. Orbital express program summary and mission overview[ C]. SPIE Defense and Security Symposium, Orlando, USA, March 16, 2005.
  • 7Hill C, Schlutz J, Fink A, et al. Explore: technology and process demonstration for orbital refuelling on a sounding rocket [ C]. The 20th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Hyere, France, May 22 - 26, 2011.
  • 8Hu Q, Li Y, Pan H L, et al. Microgravity experiment research on orbital refueling process in the vane type tank [ J ]. Applied Mechanics and Materials, 2013, 390 ( 8 ) : 53 - 56.
  • 9马原,厉彦忠,王磊.低温推进剂无排气加注过程数值研究[c].中国工程热物理年会,西安,2014年11月1-3日.
  • 10Goff J A, Kutter B F, Zegler F, et al. Realistic near-term propellant depots: implementation of a critical spacefaring capability[ C ]. AIAA Space 2009 Conference and Exposition, Pasadena, USA,September 14 - 17, 2009.

共引文献30

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部