期刊文献+

基于U-Net网络和GF-6影像的尾矿库空间范围识别 被引量:12

Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images
下载PDF
导出
摘要 利用遥感手段实现尾矿库空间范围的快速识别对我国尾矿库监测监管具有重要意义。以U-Net网络框架为基础,提出了基于深度学习的尾矿库空间范围遥感智能识别方法,利用国产高分六号影像在云南省红河哈尼族彝族自治州开展了应用验证。结果表明,该方法对尾矿库空间范围识别的精确率(Precision)、召回率(Recall)、F1-score值分别达到0.874,0.843和0.858,显著优于随机森林、支持向量机、最大似然法;尾矿库空间范围识别的耗时与上述3种方法保持相同的数量级水平。该方法在全国尾矿库空间范围变化的遥感快速监测中具有广阔的应用前景。 It is of great significance for the monitoring and supervision of tailing ponds in China to realize the rapid recognition of the spatial scopes of tailing ponds using the remote sensing technique.Based on the U-Net framework,this paper proposes a deep learning-based intelligent recognition method of the spatial ranges of tailing ponds using the remote sensing technique.The method proposed was verified in Honghe Hani and Yi Autonomous Prefecture in Yunnan Province using Chinese GF-6 satellite images.The results show that the precision,recall rate,and F1-score of the method were 0.874,0.843,and 0.858,respectively,which were significantly better than those obtained using the methods of random forest,support vector machine,and maximum likelihood.Furthermore,the time consumption of the new method kept the same order of magnitude as that of the three methods.Therefore,the method proposed in this study has a broad application prospect in the rapid monitoring of the spatial scopes of tailing ponds in China.
作者 张成业 邢江河 李军 桑潇 ZHANG Chengye;XING Jianghe;LI Jun;SANG Xiao(College of Geoscience and Surveying Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology-Beijing,Beijing 100083,China)
出处 《自然资源遥感》 CSCD 北大核心 2021年第4期252-257,共6页 Remote Sensing for Natural Resources
基金 高分辨率对地观测重大专项航空观测系统项目“基于高分航空应用校飞数据的生态环境应用技术研究”(编号:30-H30C01-9004-19/21) 中央高校基本科研业务费项目“露天矿区生态环境协同演变遥感大数据监测与分析”(编号:2021YQDC02)和“空天遥感大数据驱动的矿区生态环境演变量化分析”(编号:2021JCCXDC05)共同资助
关键词 深度神经网络 高分六号 尾矿库 遥感识别 deep neural network GF-6 satellite tailing pond recognition based on remote sensing images
  • 相关文献

参考文献4

二级参考文献49

共引文献41

同被引文献267

引证文献12

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部