期刊文献+

基于深度学习的肺部医疗图像识别 被引量:2

Lung medical image recognition based on deep learning
下载PDF
导出
摘要 肺结节作为肺癌早期诊断的重要特征,对其识别和类型判断具有重要意义。目前使用迁移学习的识别算法存在着源数据集与目标数据集差距过大问题,对于肺结节特征提取不足,导致效果不佳。故此提出了基于卷积神经网络的改进神经网络模型。将预训练的GooLeNet Inception V3网络与设计的特征融合层结合,提高网络对特征的提取能力;为确定最佳组合方式,对各组以准确率为标准进行测试。实验在LUNA16肺结节数据集上进行。进行分组测试结果表明,改进的网络准确率达88.80%,敏感度达87.15%。在识别准确率和敏感性指标上,与GooLeNet Inception V3算法相比,分别提高了2.72,2.19个百分点。在不同数据集比例下进行实验,同样达到了更优的效果,具有更好的泛化能力。可以给临床诊断提供相对客观的指标依据。 As an important feature of early diagnosis of lung cancer,pulmonary nodules are of great significance to its recognition and classification.At present,there is a large gap between the source data set and the target data set in the recognition algorithm of transfer learning,and the feature extraction of pulmonary nodules is insufficient,resulting in poor effect.This paper proposes an improved neural network model based on convolutional neural network.The pre-trained GooLeNet Inception V3 network is combined with the designed feature fusion layer to improve the network's feature extraction capability.In order to determine the best combination method,each group is tested based on accuracy.The experiment was performed on the LUNA16 dataset of pulmonary nodules.After grouping test,the accuracy and sensitivity of the improved network are 88.80% and 87.15% respectively.Compared with GooLeNet Inception V3 algorithm,the recognition accuracy and sensitivity are improved by 2.72 and 2.19 percentage points respectively.Experiments under different proportions of data sets also achieve better results and have better generalization ability.It can provide relatively objective index basis for clinical diagnosis.
作者 曹珍贯 李锐 张宗唐 CAO Zhen-guan;LI Rui;ZHANG Zong-tang(School of Electrical and Information Engineering,Anhui University of Science&Technology,Anhui Huainan 232000,China)
出处 《齐齐哈尔大学学报(自然科学版)》 2022年第2期44-49,共6页 Journal of Qiqihar University(Natural Science Edition)
基金 安徽省科技重大专项项目——矿山职工全过程智能健康管理关键技术研究及应用示范(201903a07020013) 安徽理工大学2021年研究生创新基金(2021CX2072)。
关键词 医学图像 深度学习 迁移学习 GooLeNet medical image deep learning transfer learning GooLeNet
  • 相关文献

参考文献6

二级参考文献27

  • 1王军臣,施达仁,符雪莲,卢婉平,石凤娟,鲁昌立.肺类癌型微小瘤的临床病理及其形态发生分析[J].中华病理学杂志,2003,32(4):350-353. 被引量:15
  • 2杨春山,肖湘生,李惠民,刘士远,李成洲,李慎江.孤立性肺结节质子MR波谱的初步研究[J].中华放射学杂志,2005,39(1):17-21. 被引量:8
  • 3王化,唐光健.多层螺旋CT在肺结节诊断中的应用及展望[J].国外医学(临床放射学分册),2005,28(6):402-405. 被引量:8
  • 4International early lung cancer action program investigators[J]. N Engl J Med, 2006, 355: 1763-71.
  • 5Marten K, Seyfarth T, Auer F, et al. Computer-assisted detection of pulmonary nodules: performance evaluation of an expert knowledge-based detection system in consensus reading with experienced and inexperienced chest radiologists[J].Eur Radiol, 2004. 14: 1930-8.
  • 6Farag A, EI-Baz A, Gimelfarb GG, et al. Automatic detection and recognition of lung abnormalities in helical CT images using deformable templates [C]. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2004: 856-64.
  • 7Gurean MN, Sahiner B, Petrick N, et al. Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system [J]. Med Phys, 2002, 29(11): 2552-8.
  • 8Armato III SG, Altman MB. Automated lung nodule classification following automated nodule detection on CT: A serial approach [J].Med Phys, 2003, 30(6): 1188-97.
  • 9Suzuki K, Armato SG. Massive training artificial neural network (MTANN) for reduction of false positive in computerized detection of lung nodules in low-dose computed tomography [J].Med Phys, 2003, 30(7): 1602-17.
  • 10曹蕾,占杰,余晓锷,陈武凡.基于自动阈值的CT图像快速肺实质分割算法[J].计算机工程与应用,2008,44(12):178-181. 被引量:26

共引文献44

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部