期刊文献+

Analysis of stress and failure in rock specimens with closed and open flaws on the surface

原文传递
导出
摘要 The influence of closed and open surface flaws on the stress distribution and failure in rock specimens is investigated.Heterogeneous finite element models are developed to simulate the compression tests on flawed rock specimens.The simulated specimens include those with closed flaws and those with open flaws on the surface.Systematic analyses are conducted to investigate the influences of the flaw inclination,friction coefficient and the confining stress on failure behavior.Numerical results show significant differences in the stress,displacement,and failure behavior of the closed and open flaws when they are subjected to pure compression;however,their behaviors under shear and tensile loads are similar.According to the results,when compression is the dominant mode of stress applied to the flaw surface,an open flaw may play a destressing role in the rock and relocate the stress concentration and failure zones.The presented results in this article suggest that failure at the rock surface may be managed in a favorable manner by fabricating open flaws on the rock surface.The insights gained from this research can be helpful in managing failure at the boundaries of rock structures.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第5期1222-1237,共16页 结构与土木工程前沿(英文版)
基金 The financial supports received from the Jiangxi University of Science and Technology(No.205200100469) the Distinguished Foreign Expert Talent Program Funding are gratefully acknowledged.
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部