期刊文献+

面向工业软测量应用的定制化生成对抗数据填补模型 被引量:5

Customized generative adversarial data imputation model for industrial soft sensing
原文传递
导出
摘要 在工业领域,数据缺失十分普遍,对解决下游任务(如软测量、异常检测)造成阻碍,这些任务大多依赖完整而高质量的数据集构造模型.现有缺失数据填补方法很少考虑数据填补后的具体下游任务(软测量).如何根据下游任务针对性地进行数据填补是当前研究中的挑战之一.为此,提出一种加入临时软测量模块的对抗生成数据填补模型(SSIGAN).与生成对抗数据填补模型(GAIN)相比,SSIGAN模型显式地考虑了软测量损失对数据填补模型的影响,通过临时软测量模块指导对质量相关变量的修复,实现数据填补的“定制化”,用于更精准的工业软测量建模.通过某工业炼钢过程中的终点成分软测量实验,验证了所提出方法对软测量质量相关变量缺失数据填补效果以及最终软测量效果的提升. Missing data is quite common in the industrial field,resulting in problems in downstream applications such as soft sensing and anomaly detection,as most data driven methods used in these applications rely on complete and highquality dataset to build a high-quality model.Current data imputation methods hardly take its following applications like soft sensing into consideration.A considerable challenge is how to refine missing data repair according to its downstream application.In this paper,we propose an imputation generative adversarial network with soft sensor(SSIGAN)which considers the loss of soft sensors as data.Compared with the imputation generative adversarial network(GAIN),the proposed SSIGAN model introduces the influence of data imputation on the soft sensor.The temporary soft sensor model gives guidance for better repair of quality-related variables.Thus,“customized”data imputation can be achieved for building a more accurate industrial soft sensor.An experiment of soft sensing of end-point composition in a steel-making process is conducted and verifies the improvement of data imputation of quality-related variables and that of the soft sensor with the proposed data imputation model.
作者 姚邹静 赵春晖 李元龙 付川 乔红麟 YAO Zou-jing;ZHAO Chun-hui;LI Yuan-long;FU Chuan;QIAO Hong-lin(College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;Alibaba Group,Hangzhou 310024,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第12期2929-2936,共8页 Control and Decision
基金 浙江省工业化与信息化融合联合基金项目(U1709211) 浙江省重点研发基金项目(2019C03100).
关键词 工业过程 缺失数据 数据填补 生成对抗网络 软测量 转炉炼钢 industrial process missing data data imputation generative adversarial network soft sensor converter steelmaking
  • 相关文献

参考文献3

二级参考文献22

  • 1Wang N, Robins J M . Large - sample theory for parametric multiple imputation procedures[J]. Biometrika, 1998.85(4) :935-948.
  • 2James H, Anne J, Gary K, et al. Amelia: A Program for Missing Data[S]. Department of Government, Harvard University, 1999.2-15.
  • 3Aidan M. Multiple imputation for missing data using the “Solas for the missing data analysis” software application [ S]. Conference of European Statisticians. 1999. 2-8.
  • 4Nicholas J H. Stuart R L. Multiple imputation in Practices: comparison of software packages for the regression models with missing variables[J]. The American Statistician. 2001. 55(3) :244-254.
  • 5Yang C Y. Multiple imputation for missing data: concepts and new development[S]. SAS Institute Inc. 1999. 4-9.
  • 6Barnard J, Meng X L. Applications of multiple imputation in medical study: from ADIS to NHANES[J]. Statistical Methods in Medical Research, 1999,8(1): 17-36.
  • 7Barnard J, Rubin D B. Small sample degrees of freedom with multiple imputation[J]. Biometrika, 1999, 86(4) :948-955.
  • 8Fienberg S E , Willenborg L C . Introduction to the special issue :disclosure limitation methods for protecting the confidentiality of statistical data[J ]. Journal of Official Statiatica. 1998, 14 (4) : 337 -345.
  • 9Horton N J, Laird N M. Maximum likelihood analysis of generalized linear models with missing covariates [J]. Statistical Methods in Medical Research, 1999, 8 (1) : 37 - 50.
  • 10King G, Honaker J, Joseph A, et al. Analyzing incomplete political science data: an alternative algorithm for multiple imputation[J].American Political Science Review, 2001, 95 (1) :46 - 69.

共引文献132

同被引文献43

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部