期刊文献+

基于DLSR的归纳式迁移学习 被引量:1

DLSR based inductive transfer learning method
原文传递
导出
摘要 传统机器学习方法的有效性依赖于大量的有效训练数据,而这难以满足,因此迁移学习被广泛研究并成为近年来的研究热门.针对由于训练数据严重不足导致多分类场景下分类性能降低的挑战,提出一种基于DLSR(discriminative least squares regressions)的归纳式迁移学习方法(TDLSR).该方法从归纳式迁移学习出发,通过知识杠杆机制,将源域知识迁移到目标域并同目标域数据同时进行模型学习,在提升分类性能的同时保证源域数据的安全性.TDLSR继承了DLSR在多分类任务中扩大类别间间隔的优势,为DLSR注入了迁移能力以适应数据不足的挑战,更加适用于复杂的多分类任务.通过在12个真实UCI数据集上进行实验,验证了所提出方法的有效性. Since the effectiveness of traditional machine learning methods depends on a large amount of effective training data and it is difficult to satisfy,transfer learning has been widely studied and become a hot research in recent years.In order to meet the challenge that the classification performance is degraded due to the serious shortage of training data in current multiclass classification scenarios,a discriminative least squares regressions(DLSR)based inductive transfer learning method(TDLSR)is proposed.The proposed method starts with inductive transfer learning,and transfers knowledge from source domain to target domain through knowledge leverage mechanism.It combines the knowledge of source domain and data in target domain for model learning,which improves classification performance and ensures the security of source domain data.The TDLSR inherits the advantage of the DLSR,which is better applicable to multiclass classification tasks by enlarging the distance between different classes,and injects transfer ability for the DLSR to adapt to the challenge of training data shortage.It can be well applied to various complex multiclass classification tasks.Experiments on 12 real UCI datasets verify the effectiveness of the proposed method.
作者 姜志彬 潘兴广 周洁 张远鹏 王士同 JIANG Zhi-bin;PAN Xing-guang;ZHOU Jie;ZHANG Yuan-peng;WANG Shi-tong(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi 214122,China;Jiangsu Key Laboratory of Digital Design and Software Technology,Jiangnan University,Wuxi 214122,China;Department of Medical Informatics,Nantong University,Nantong 226019,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第12期2982-2990,共9页 Control and Decision
基金 国家自然科学基金项目(61772198,61772239,81701793).
关键词 多分类 DLSR 归纳式迁移学习 知识杠杆机制 安全性 multiclass classification DLSR inductive transfer learning knowledge leverage mechanism security
  • 相关文献

参考文献3

二级参考文献57

  • 1Zadeh L A. Probability theory and fuzzy logic are complementary rather than competitive. Technometrics, 1995, 37(3): 271-276.
  • 2Dubois D, Prade H. Fuzzy sets and probability: misunderstandings, bridges, and gaps. In: Proceedings of the 2nd IEEE Conference on Fuzzy Systems. San Francisco, CA: IEEE, 1993. 1059-1068.
  • 3Mendel J M. Uncertain Rule-based Fuzzy Logic Systems Introduction and New Directions. New York: Prentice-Hall, 2000.
  • 4Zhu L, Chung F L, Wang S T. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(3): 578-591.
  • 5Astr?m K J, McAvoy T J. Intelligent control. Journal of Process Control, 1993, 2(3): 115-127.
  • 6Deng Z H, Choi K S, Chung F L, Wang S T. Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 210-226.
  • 7Chung F L, Deng Z H, Wang S T. An adaptive fuzzy-inference-rule-based flexible model for automatic elastic image registration. IEEE Transactions on Fuzzy Systems, 2009, 17(5): 995-1010.
  • 8Dai X L, Khorram S. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2351-2362.
  • 9Le Moigne J, Campbell W J, Cbased on the correlation of wavelet features. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1849-1864.
  • 10Juang C F, Chiu S H, Chang S W. A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems. IEEE Transactions on Fuzzy Systems, 2007, 15(5): 998-1008.

共引文献44

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部