期刊文献+

基于改进卷积神经网络的动力下肢假肢运动意图识别 被引量:5

Intent recognition of power lower-limb prosthesis based on improved convolutional neural network
原文传递
导出
摘要 传统动力下肢假肢运动意图识别算法常使用机器学习算法分类器,在特征选择方面则需要手工提取.针对该问题将深度学习算法应用于运动意图识别研究中,通过在传统的卷积神经网络的基础上进行改进,使算法更适应于基于短时行为样本数据的运动意图识别,同时抑制深度学习算法应用于运动意图识别中的过拟合.在意图识别数据集中进行滑动窗口预处理,目的是对时间序列样本做数据增广,扩增目标数据集能够使训练集更加丰富全面,提高识别的精度,运用改进后的卷积神经网络对增广后的数据集进行特征学习与分类.实验结果表明,该方法在13类运动模式下的识别率达到93%. Traditional intent recognition algorithms of power lower-limb prosthesis often use machine learning algorithm classifiers,which require manual extraction in feature selection.In this paper,using deep learning algorithms in motion intent recognition research,the algorithm is improved on the basis of the traditional convolutional neural network,and is more suitable for the motion intent recognition based on the short-term behavior sample data,while suppressing the application of deep learning algorithms in motion intent recognition.The sliding window preprocessing is performed on the intent recognition data set.The purpose is to augment the data of the time series samples.Amplifying the target data set can make the training set more abundant and comprehensive,improve the accuracy of recognition.The improved convolutional neural network is used to perform feature learning and classification on the augmented data set.The experimental results show that the recognition rate of the improved algorithm under the 13 types of motion patterns reaches 93%.
作者 苏本跃 倪钰 盛敏 赵丽丽 SU Ben-yue;NI Yu;SHENG Min;ZHAO Li-li(School of Computer and Information,Anqing Normal University,Anqing 246133,China;School of Mathematics and Computer,Tongling University,Tongling 244061,China;University Key Laboratory of Intelligent Perception and Computing of Anhui Province,Anqing 246133,China;School of Mathematics and Computational Science,Anqing Normal University,Anqing 246133,China;Institute of Intelligent Machines,Chinese Academy of Sciences,Hefei 230031,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第12期3031-3038,共8页 Control and Decision
基金 国家自然科学基金项目(11475003,61603003,11471093) 教育部“云数融合科教创新”基金项目(2017A09116) 安徽省科技重大专项(18030901021) 安徽省高校领军人才团队项目(皖教秘人[2019]16号) 安徽省高校优秀拔尖人才培育项目(gxbjZD26).
关键词 动力下肢假肢 运动意图识别 短时时间序列样本 改进卷积神经网络 自学习特征 lower-limb prosthesis intent recognition short-term sample improved CNN self-learning feature
  • 相关文献

参考文献9

二级参考文献55

  • 1张前进,孙炎增,徐素莉.基于连续HMM与静态外观信息模型融合的步态识别[J].微电子学与计算机,2009,26(3):45-48. 被引量:4
  • 2Leading Group of the Second China National Sample Survey on Disability, National Bureau of Statistics of the People’s Republic of China.2006年第二次全国残疾人抽样调查主要数据公报[J].中国康复理论与实践,2006,12(12):1013-1013. 被引量:158
  • 3Sup F, Varol H A, Goldfarb M. Upslope walking with a pow- ered knee and ankle prosthesis: Initial results with an amputee subject[J]. IEEE Transactions on Neural Systems and Rehabili- tation Engineering, 2011, 19(1): 71- 78.
  • 4Varol H A, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis[J]. IEEE Trans- actions on Biomedical Engineering, 2010, 57(3): 542-551.
  • 5Flowers W C, Mann R W. Electrohydraulic knee-torque con- troller for a prosthesis simulator[J]. SAME Journal of Biome- chanical Engineering, 1977, 99(4): 3-8.
  • 6Kapti A O, Yucenur M S. Design and control of an active ar- tificial knee joint[J]. Mechanism and Machine Theory, 2006, 41(12): 1477-1485.
  • 7Humphrey L, Hemami H, Barin K, et al. Simulated responses to support surface disturbances in a humanoid biped model with a vestibular-like apparatus[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 40(1): 109-119.
  • 8彭子平,张严虎,潘露露.隐马尔科夫模犁原理及其重要应用[J].计算机科学,2008,35(4A):138-139.
  • 9喻洪流,关慎远,钱省三,赵展.膝上假肢的智能控制方法[J].中国康复医学杂志,2008,23(2):145-147. 被引量:8
  • 10谢炯亮,郑金华.NSGA-Ⅱ中重复个体产生原因分析及影响研究[J].计算机工程与应用,2008,44(29):69-72. 被引量:8

共引文献122

同被引文献41

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部