期刊文献+

转筒中两种形状颗粒的雪崩过程对比

Comparison of the avalanche process of two shaped particles in a drum
下载PDF
导出
摘要 为了研究颗粒形状对转筒内颗粒雪崩运动过程的影响,采用散斑能见度光谱法(SVS)和图像法测量了粒径均为0.5 mm的球形颗粒和不规则颗粒的间歇性雪崩运动过程。研究结果表明,球形颗粒雪崩过程与不规则颗粒不同,不规则颗粒会发生单压实和双压实两种压实现象,填充率不同双压实现象的出现概率不同。单、双压实的持续时间也与填充率存在不同比例关系。同时研究发现不规则颗粒的倾斜角大于球形颗粒的倾斜角,而不规则颗粒压实前颗粒堆积的重力势能越大,越容易发生双压实现象。 In order to study the influence of particle shape on the avalanche movement process of particles in the drum,we use the speckle visibility spectroscopy and image method to measure the intermittent avalanche movement of spherical particles and irregular particles with a diameter of 0.5 mm.The research results show that the avalanche process of spherical particles is different from that of irregular particles.Irregular particles will have two compaction phenomena,single compaction and double compaction,and the probability of occurrence of double compaction phenomenon is different under different filling degrees.The duration of single and double compaction also has a different proportional relationship with the filling degree.Additionally,it is found that the tilt angle of irregular particles is larger than that of spherical particles,and the larger the gravitational potential energy of the particle accumulation before compaction of irregular particles,the easier it is to produce double compaction.
作者 王淳 李然 陈泉 修文正 杨晖 WANG Chun;LI Ran;CHEN Quan;XIU Wenzheng;YANG Hui(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《光学仪器》 2021年第6期38-45,共8页 Optical Instruments
基金 国家自然科学基金(11572201) 国家自然科学基金(91634202)。
关键词 颗粒流 散斑能见度光谱法 压实 倾斜角 填充度 granular flow speckle visibility spectroscopy compaction tilt angle filling degree
  • 相关文献

参考文献5

二级参考文献129

  • 1陆坤权,刘寄星.颗粒物质(上)[J].物理,2004,33(9):629-635. 被引量:140
  • 2陆坤权,刘寄星.颗粒物质(下)[J].物理,2004,33(10):713-721. 被引量:63
  • 3Williams, J. R., & Pentland, A. (1992). Super-quadrics and modal dynamics for discrete elements in interactive design. International Journal of Computer-Aided Engineering--Engineering Computations, 9, 115-127.
  • 4Barker, G. C. (1994). Computer simulations of granular materials. In A. Mehta (Ed.), Granular matter: An interdisciplinary approach (pp. 35-83). NY: Springer-Verlag.
  • 5Campbell, C. S. (1990). Rapid granular flows. Annual Review of Fluid Mechanics, 22. 57-90.
  • 6Campbell, C. S., Cleary, P. W., & Hopkins, M. (1995). Large scale landslide simulations: Global deformation, velocities and basal friction.Journal of Geophysical Research, 100, 8267-8283.
  • 7Cleary, P. W. (1998a). Discrete element modelling of industrial granular flow applications. TASK Quarterly: Scientific Bulletin, 2, 385-416.
  • 8Cleary, P. W. (1998b). Predicting charge motion, power draw, segregation, wear and particle breakage in ball mills using discrete element methods. Minerals Engineering, 11, 1061-1080.
  • 9Cleary, P. W. (1998c). The filling of dragline buckets. Mathematical Engineering in Industry, 7, 1-24.
  • 10Cleary, P. W. (2000). DEM simulation of industrial particle flows: Case studies of dragline excavators, mixing in tumblers and centrifugal mills. Powder Technology, 109, 83-104.

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部