期刊文献+

基于图像识别的果蔬自助结算系统 被引量:2

Fruit and Vegetable Self-service Settlement System Based on Image Recognition
下载PDF
导出
摘要 实现对缺少条形码的水果蔬菜的识别与结算,是超市自助结算的一大难题;为在资源有限的结算终端设备上实现超市果蔬的识别与分类,提出了一种基于神经网络的果蔬识别算法;通过增加网络宽度的方法改进Alex Net,提升识别性能;结合压力传感器、摄像头等硬件设备,在树莓派上进行实验,完成了果蔬自助结算系统的搭建;经实验测试,系统对果蔬的平均识别准确率可达98.25%,单次结算总耗时约7.48 s,仅为人工结算耗时的1/4,满足果蔬自助结算系统的实际应用需求。 Realizing the identification and settlement of fruits and vegetables that lack barcodes is a major problem in supermarket self-service settlement.In order to realize the identification and classification of fruits and vegetables in supermarkets on the settlement terminal equipment with limited resources,a fruit and vegetable identification algorithm based on neural network is proposed.Improve Alex Net by increasing the network width to improve recognition performance.Combined with hardware devices such as pressure sensors and cameras,experiments were conducted on the Raspberry Pi to complete the construction of a fruit and vegetable self-service settlement system.After experimental tests,the average recognition accuracy of the system for fruits and vegetables can reach 98.25%,and the total time for a single settlement is about 7.48 seconds,which is only 1/4 of the time for manual settlement,which meets the actual application requirements of the fruit and vegetable self-service settlement system.
作者 段中兴 李伟哲 张亚俐 周孟 丁青辉 DUAN Zhongxing;LI Weizhe;ZHANG Yali;ZHOU Meng;DING Qinghui(School of Information and Control Engineering,Shaanxi Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《计算机测量与控制》 2021年第12期195-203,共9页 Computer Measurement &Control
基金 国家自然科学基金项目(51678470)。
关键词 图像识别 果蔬分类 Alex Net 自助结算系统 image recognition fruit and vegetable classification Alex Net self-service settlement system
  • 相关文献

参考文献14

二级参考文献120

  • 1徐杰民,肖云.二维条码技术现状及发展前景[J].计算机与现代化,2004(12):141-142. 被引量:62
  • 2戴宏斌,张敏灵,周志华.一种基于多示例学习的图像检索方法[J].模式识别与人工智能,2006,19(2):179-185. 被引量:9
  • 3卯晓岚.中国毒菌物种多样性及其毒素[J].菌物学报,2006,25(3):345-363. 被引量:148
  • 4潘勇,高俊雄,王耘波.PLC的应用和发展[J].计算机与数字工程,2007,35(2):76-78. 被引量:21
  • 5李光辉,赵军,王智.基于无线传感器网络的森林火灾监测预警系统[J].传感技术学报,2006,19(6):2760-2764. 被引量:62
  • 6BOLLE R. M, CONNELL J H, HAAS N, et al. Veggie vision: a produce recognition system[ C]// 3rd IEEE Workshop on Applica- tions of Computer Vision. Piscataway: IEEE Press, 1996:244 - 251.
  • 7ROCHA A, HAUAGGE D C, WAINER J, et al. Automatic fruit and vegetable classification from images [ J]. Computers and Elec- tronics in Agriculture, 2010, 70(1) : 96 - 104.
  • 8DIETI?ERICH T G, LATHROP R H, PEREZ T L, et al. Solving the multiple instance problem with axis-parallel rectangles[ J]. Artificial Intelligence, 1997, 89(1): 31-71.
  • 9MARON O, RATAN A L. Muhiple-instance learning for natural scene classification[ C] // Proceedings of the 15th International Con- ference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1998:341 -349.
  • 10YANG C. Image database retrieval with multiple-instance learning techniques[ C]// Proceedings of 16th International Conference on Data Engineering. Piscataway: IEEE Press, 2000:81 - 82.

共引文献179

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部