期刊文献+

基于量子计数的贝叶斯二元分类算法 被引量:3

Bayesian Binary Classification Algorithm Based on Quantum Counting
下载PDF
导出
摘要 贝叶斯分类算法是一种基于概率统计理论的有监督学习算法,常被用于分类问题中.本文将量子计数与经典贝叶斯分类算法相结合,提出一种新的量子贝叶斯分类算法.通过量子随机访问存储器制备所需的量子态,使用oracle进行相位翻转并构造与之所对应的操作算子,在操作算子的本征态空间上重新描述量子态,借助辅助粒子进行相位估计,投影测量后即可高效地计算出贝叶斯分类所需的数据,实现量子贝叶斯分类算法.该算法在低维特征空间中与经典算法相比有着指数级加速. Bayesian classification algorithm is a supervised learning algorithm based on the statistics theory of probability,which is often used in classification problems.In this paper,a new quantum Bayesian classification algorithm is proposed by combining quantum counting with classical Bayesian classification algorithm.The required quantum states are prepared by a quantum random access memory,the oracle is used to phase flip and construct the corresponding operator,the quantum states are redescribed on the eigenstate space of the operator,and phase estimation is performed with the help of auxiliary particles.Then,the data required for Bayesian classification can be efficiently calculated after projection measurements and the quantum Bayesian classification algorithm can be realized.Compared with the classical algorithm,this algorithm has exponential acceleration in the low dimensional feature space.
作者 陆春悦 郭躬德 林崧 Lu Chunyue;Guo Gongde;Lin Song(College of Computer and Cyber Security,Fujian Normal University,Fuzhou 350117,China)
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期117-121,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61976053、61772134) 福建省高等学校新世纪优秀人才支持计划 福建省自然科学基金项目(2018J01776).
关键词 量子机器学习 贝叶斯分类 二元分类 量子计数 相位估计 quantum machine learning Bayesian classification binary classification quantum counting phase estimation
  • 引文网络
  • 相关文献

参考文献8

二级参考文献123

  • 1余位驰,缪祥华,何大可.NTRU译码错误研究[J].铁道学报,2005,27(5):61-66. 被引量:4
  • 2Yao Jun Zeng Guihua.Enhanced NTRU cryptosystem eliminating decryption failures[J].Journal of Systems Engineering and Electronics,2006,17(4):890-895. 被引量:3
  • 3王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 4LU MingXin,LAI XueJia,XIAO GuoZhen,QIN Lei.Symmetric-key cryptosystem with DNA technology[J].Science in China(Series F),2007,50(3):324-333. 被引量:14
  • 5Heller E J, O' Connor P W, Gehlen J. The eigenfunctions of classical chaostic systems[ J]. Physica Scripta, 1989, 40:354- 359.
  • 6Wintgen D, Marxer H, Briggs J S. Properties of off-shell coulomb radial wave functions [ J ]. J Phys A, 1987,20 :L965-L968.
  • 7Casati D, Chirikov B V, Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ M ]. Lect Notes Phys, 1979 93:334-352.
  • 8Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function [ J]. Dokl Akad Nauk SSSR,1954, 98 : 527-530.
  • 9Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR,1963,18:13-40.
  • 10Moser J. On invariant curves of area-preserving mappings of an annulus [ J ]. Nachr Akad Wiss Gottingen Math--Phys, 1962, K1:1-20.

共引文献43

同被引文献18

引证文献3

二级引证文献1

;
使用帮助 返回顶部