期刊文献+

Stability evaluation of the PROSPECT model for leaf chlorophyll content retrieval

原文传递
导出
摘要 The radiative transfer model,PROSPECT,has been widely applied for retrieving leaf biochemical traits.However,little work has been conducted to evaluate the stability of the PROSPECT model with consideration of multiple factors(i.e.,spectral resolution,signal-to-noise ratio,plant growth stages,and treatments).This study aims to investigate the stability of the PROSPECT model for retrieving leaf chlorophyll(Chl)content(Cab).Leaf hemispherical reflectance and transmittance of oilseed rape were acquired at different spectral resolutions,noise levels,growth stages,and nitrogen treatments.The Chl content was also measured destructively by using a microplate spectrophotometer.The performance of the PROSPECT model was compared with a commonly used random forest(RF)model.The results showed that the prediction accuracy of PROSPECT and RF models for Cab did not produce significant differences under varied spectral resolutions ranging from 1 to 20 nm.The ranges of the relative root mean square errors(rRMSE)of the PROSPECT and RF models were 12%-13%and 11.70%-12.86%,respectively.However,the performance of both models for leaf Chl retrieval was strongly influenced by the noise level with the rRMSE of 13-15.37%and 12.04%-15.80%for PROSPECT and RF,respectively.For different growth stages,the PROSPECT model had similar prediction accuracies(rRMSE=9.26%-12.41%)to the RF model(rRMSE=9.17%-12.70%).Furthermore,the superiority of the PROSPECT model(rRMSE=10.10%-12.82%)over the RF model(rRMSE=11.81%-15.47%)was prominently observed when tested with plants growth at different nitrogen treatment levels.The results demonstrated that the PROSPECT model has a more stable performance than the RF model for all datasets in this study.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第5期189-198,共10页 国际农业与生物工程学报(英文)
基金 supported by the National Natural Science Foundation of China(Grant No.31801256) National Key Research&Development Program supported by Ministry of Science and Technology of China(Grant No.2017YFD0201501).
  • 相关文献

参考文献2

二级参考文献62

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部