期刊文献+

线粒体靶向小分子IR-780对顺铂耐药膀胱癌细胞的杀伤效应 被引量:1

Anti-tumor effect of mitochondrial targeted small molecule IR-780 on cisplatin-resistant bladder cancer cells
下载PDF
导出
摘要 目的探讨线粒体靶向小分子IR-780对顺铂耐药T24膀胱癌细胞株(T24/DPP)的杀伤效应及其作用机制。方法通过顺铂反复间断刺激T24细胞,构建T24/DPP耐药细胞株,以不同浓度的IR-780处理细胞,CCK-8法检测细胞活力,划痕实验检测细胞迁移能力,荧光共聚焦确定IR-780的亚细胞器定位,流式细胞术测定细胞凋亡以及线粒体活性氧水平。对6~8周龄雄性裸鼠皮下注射T24/DPP细胞建立动物荷瘤模型,将荷瘤小鼠完全随机化分组:对照组、阿霉素组和IR-780组分别腹腔注射5 mg/kg PBS、阿霉素和IR-780,隔天1次。通过近红外活体成像以及荧光共聚焦检测IR-780的蓄积特性,并对肿瘤生长情况进行监测。结果①细胞实验结果显示,IR-780抑制T24/DPP细胞增殖与迁移,且抑制作用呈明显的剂量效应关系(P<0.05)。IR-780选择性积聚在T24/DPP细胞的线粒体中。随着IR-780浓度的增加,T24/DDP细胞线粒体活性氧的产生和细胞凋亡率均随之增加(P<0.05)。②体内实验结果显示,近红外活体成像和肿瘤组织冰冻切片显示IR-780可优先聚集于裸鼠T24/DDP皮下移植瘤,并且IR-780组小鼠肿瘤的体积及质量均明显小于对照组(P<0.05)和阿霉素组(P<0.05)。结论IR-780能显著抑制T24/DPP细胞和裸鼠皮下肿瘤的生长,且线粒体通路可能参与了IR-780诱导T24/DPP细胞发生凋亡的过程。 Objective To study the anti-tumor effect of IR-780,a mitochondrial targeting small molecule,on cisplatin-resistant T24 cell line(T24/DPP).Methods T24/DPP cell line was constructed by repeated and discontinuous stimulation of T24 cells with cisplatin.After the drug-resistant cells were treated with different concentrations of IR-780,cell viability was detected by CCK-8 assay and cell migration was measured by wound healing assay.The suborganelle localization of IR-780 was determined by confocal fluorescence microscopy with aid of mitotracker treatment.Cell apoptosis and production of mitochondrial reactive oxygen species(ROS)were determined by flow cytometry.T24/DPP cells were injected subcutaneously into 6-~8-week-old male nude mice to establish a tumor-bearing nude mouse model.The tumor-bearing mice were randomly divided into 3 groups,including control group(5 mg/kg PBS),DOX group(5 mg/kg DOX)and IR-780 group(5 mg/kg IR-780).After intraperitoneal administration of IR-780,the accumulation of IR-780 were detected by near-infrared in vivo imaging system and confocal fluorescence microscopy,while the tumor volume and weight were measured.Results①In vitro,IR-780 inhibited the proliferation and migration of T24/DPP cells in a dose-dependent manner(P<0.05).IR-780 was selectively accumulated in the mitochondria of T24/DPP cells.With the increase of IR-780 concentration,the production of mitochondrial ROS and the rate of apoptosis in T24/DDP cells were increased(P<0.05).②In vivo,near-infrared imaging and frozen sections of tumor tissue showed that IR-780 preferentially accumulated in the tumor of tumor-bearing nude mouse model.The tumor volume and weight of the IR-780 group were significantly less and lower when compared with the control group(P<0.05)and DOX group(P<0.05).Conclusion IR-780 can significantly inhibit the growth of T24/DDP cells and subcutaneous tumor xenografts in nude mice,and the mitochondrial pathway might be involved in the apoptosis of T24/DPP cells induced by IR-780.
作者 黄垣堤 沈崇星 李金瑾 方强 支轶 HUANG Yuandi;SHEN Chongxing;LI Jinjin;FANG Qiang;ZHI Yi(Department of Urology,the Third Affiliated Hospital of Chongqing Medical University,Chongqing,401120,China)
出处 《第三军医大学学报》 CAS CSCD 北大核心 2021年第23期2570-2576,共7页 Journal of Third Military Medical University
基金 重庆医科大学附属第三医院科研孵化项目(KY08026) 2021年渝北区科技计划项目[2021(农社)38]。
关键词 膀胱癌 肿瘤靶向 IR-780 顺铂 耐药 bladder cancer tumor targeting IR-780
  • 相关文献

参考文献1

  • 1H.Agakishiev,M.M.Aggarwal,Z.Ahammed,A.V.Alakhverdyants,I.Alekseev,J.Alford,B.D.Anderson,C.D.Anson,D.Arkhipkin,G.S.Averichev,J.Balewski,D.R.Beavis,N.K.Behera,R.Bellwied,M.J.Betancourt,R.R.Betts,A.Bhasin,A.K.Bhat,H.Bichsel,J.Bieleik,J.Bielcikova,B.Biritz,L.C.Bland,W.Borowski,J.Bouchet,E.Braidot,A.V.Brandin,A.Bridgeman,S.G.Brovko,E.Bruna,S.Bueltmann,I.Bunzarov,T.P.Burton,X.Z.Cai,H.Caines,M.Calderon de la Barca Sanchez,D.Cebra,R.Cendejas,M.C.Cervantes,Z.Chajecki,P.Chaloupka,S.Chattopadhyay,H.F.Chen,J.H.Chen,J.Y.Chen,L.Chen,J.Cheng,M.Cherney,A.Chikanian,K.E.Choi,W.Christie,P.Chung,M.J.M.Codrington,R.Corliss,J.G.Cramer,H.J.Crawford,S.Dash,A.Davila Leyva,L.C.De Silvat,R.R.Debbe,T.G.Dedovich,A.A.Derevschikov,R.Derradi de Souza,L.Didenko,P.Djawotho,S.M.Dogra,X.Dong,J.L.Drachenberg,J.E.Draper,J.C.Dunlop,L.G Efimov,M.Elnim,J.Engelage,G Eppley,M.Estienne,L.Eun,O.Evdokimov,R.Fatemi,J.Fedorisin,A.Feng,R.G.Fersch,P.Filip,E.Finch,V.Fine,Y.Fisyak,C.A.Gagliardi,D.R.Gangadharan,A.Geromitsos,F.Geurts,P.Ghosh,Y.N.Gorbunov,A.Gordon,O.Grebenyuk,D.Grosnick,S.M.Guertin,A.Gupta,W.Guryn,B.Haag,O.Hajkova,A.Hamed,L-X.Han,J.W.Harris,J.P.Hays-Wehle,M.Heinz,S.Heppelmann,A.Hirsch,E.Hjort,G.W.Hoffmann,D.J.Hofiman,B.Huang,H.Z.Huang,T.J.Humanic,L.Huo,G.Igo,P.Jacobs,W.W.Jacobs,C.Jena,F.Jin,J.Joseph,E.G.Judd,S.Kabana,K.Kang,J.Kapitan,K.Kauder,H.Ke,D.Keane,A.Kechechyan,D.Kettler,D.P.Kikola,J.Kiryluk,A.Kisiel,V.Kizka,A.G.Knospe,D.D.Koetke,T.Kollegger,J.Konzer,I.Koralt,L.Koroleva,W.Korsch,L.Kotchenda,V.Kouchpil,P.Kravtsov,K.Krueger,M.Krus,L.Kumar,P.Kurnadi,M.A.C.Lamont,J.M.Landgraf,S.LaPointe,J.Lauret,A.Lebedev,R.Lednicky,J.H.Lee,W.Leight,M.J.LeVine,C.Lil,L.Li,N.Li,W.Li,X.Li,X.Li,Y.Li,Z.M.Li,M.A.Lisa,F.Liu,H.Liu,J.Liu,T.Ljubicic,W.J.Llope,R.S.Longacre,W.A.Love,Y.Lu,E.V.Lukashov,X.Luo,G.L.Ma,Y.G.Mai,D.P.Mahapatra,R.Majka,O.I.Mall,L.K.Mangotra,R.Manweiler,S.Margetis,C.Markert,H.Masui,H.S.Matis,Yu.A.Matulenko,D.MeDonald,T.S.McShane,A.Meschanin,R.Milner,N.G.Minaev,S.Mioduszewski,A.Mischke,M.K.Mitrovski,B.Mohanty,M.M.Mondal,B.Morozov,D.A.Morozov,M.G.Munhoz,M.Naglis,B.K.Nandi,T.K.Nayak,P.K.Netrakanti,L.V.Nogach,S.B.Nurushev,G.Odyniec,A.Ogawa,Oh,Ohlson,V.Okorokov,E.W.Oldag,D.Olsont,M.Pachr,B.S.Page,S.K.Pal,Y.Pandit,Y.Panebratsev,T.Pawlak,H.Pei,T.Peitzmann,C.Perkins,W.Peryt,S.C.Phatak,P.Pile,M.Planinic,M.A.Ploskon,J.Pluta,D.Plyku,N.Poljak,A.M.Poskanzer,B.V.K.S.Potukuchi,C.B.Powell,D.Prindle,N.K.Pruthi,A.M.Poskanzer,B.V.K.S.Potukuchi,B.Powell,D.Prindle,N.K.Pruthi,P.R.Pujahar,J.Putschke,H.Qiu,R.Raniwala,S.Raniwala,R.L.Ray,R.Redwine,R.Reed,H.G.Riter,J.B.Roberts,O.V.Rogachevskiy,J.L.Romero,A.Rose,L.Ruan,J.Rusnak,N.R.Sahoo,S.Sakai,I.Sakrejda,T.Sakuma,S.Salur,J.Sandweiss,E.Sangaline,A.Sarkar,J.Schambach,R.P.Scharenberg,A.M.Schmah,N.Schmitz,T.R.Schuster,J.Seele,J.Seger,I.Selyuzhenkov,P.Seyboth,E.Shahaliev,M.Shao,M.Sharma,S.S.Shi,Q.Y.Shou,E.P.Sichtermann,F.Simon,R.N.Singaraju,M.J.Skoby,N.Smirnov,H.M.Spinka,B.Srivastava,T.D.S.Stanislaus,D.Staszak,S.G.Steadman,J.R.Stevens,R.Stock,M.Strikhanov,B.Stringfellow,A.A.P.Suaide,M.C.Suarez,N.L.Subba,M.Sumbera,X.M.Sun,Y.Sun,Z.Sun,B.Surrow,D.N.Svirida,T.J.M.Symons,A.Szanto de Toledo,J.Takahashi,A.H.Tang,Z.Tang,L.H.Tarini,T.Tarnowsky,D.Thein,J.H.Thomas,J.Tian,A.R.Timmins,D.Tlusty,M.Tokarev,V.N.Tram,S.Trentalange,R.E.Tribble,Tribedy,O.D.Tsai,T.Ullrich,D.G.Underwood,G.Van Buren,G.van Nieuwenhuizen,J.A.Vanfossen,R.Varma,G.M.S.Vasconcelos,A.N.Vasiliev,F.Videbaek,Y.P.Viyogi,S.Vokal,M.Wadat,M.Walker,F.Wang,G.Wang,H.Wang,J.S.Wang,Q.Wang,X.L.Wang,Y.Wang,G.Webb,J.C.Webb,G.D.Westfall,C.Whitten,H.Wieman,S.W.Wissink,R.Witt,W.Witzke,Y.F.Wu,Xiao,W.Xie,H.Xu,N.Xu,Q.H.Xu,W.Xu,Y.Xu,Z.Xu,L.Xue,Y.Yang,P.Yepes,K.Yip,I-K.Yoo,M.Zawisza,H.Zbroszczyk,W.Zhan,J.B.Zhang,S.Zhang,W.M.Zhang,X.P.Zhang,Y.Zhang,Z.P.Zhang,J.Zhao,C.Zhong,W.Zhou,X.Zhu,Y.H.Zhu,R.Zoulkarneev,Y.Zoulkarneeva.Measurements of dihadron correlations relative to the event plane in Au+Au collisions at√^(S)NN=200 GeV[J].Chinese Physics C,2021,45(4):198-241. 被引量:351

二级参考文献1

共引文献350

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部