期刊文献+

基于步态数据的下肢康复机器人控制设计 被引量:7

Control Design of Lower Limb Rehabilitation Robot Based on Gait Data
下载PDF
导出
摘要 为了使下肢康复机器人的辅助康复训练更加符合人体运动特性,为下肢运动功能障碍的患者提供更加安全、有效的康复训练,提出一种基于人体步态数据和径向基函数(RBF)神经网络的下肢康复机器人控制策略。首先,以三维动作捕捉系统获取的健康人体步态数据为系统的期望输入;其次,通过RBF神经网络自适应控制器产生驱动机器人关节运动的力矩,使机器人的运动轨迹跟踪期望轨迹;然后,采用基于前馈控制的校正模型对机器人的输入力矩进行补偿校正,达到实时校正的目的,从而实现更好的跟踪效果;最后,通过基于实验数据的仿真结果,验证了该方法的可行性和有效性。 In order to make the assisted rehabilitation training of the lower limb rehabilitation robot(LLRR)more consistent with human motor characteristics, and to provide more safe and effective rehabilitation training for patients with lower limb motor dysfunction, a control strategy of the LLRR based on human gait data and radial basis function(RBF) neural network is proposed. Firstly, the gait data of healthy human body acquired by 3 D motion capture system is taken as the expected input of the system. Secondly, the RBF neural network adaptive controller generates the torque to drive the joint motion of the LLRR, so that the motion trajectory of the robot can track the desired trajectory. Then, the modified model based on feedforward control is used to compensate and correct the input torque of the robot, so as to achieve real-time correction and better tracking effect. Finally, the simulation results based on experimental data demonstrate the feasibility and effectiveness of the proposed method.
作者 王瑷珲 葛祎霏 胡宁宁 但永平 喻俊 卢俊兰 WANG Ai-hui;GE Yi-fei;HUNing-ning;DAN Yong-ping;YU Jun;LU Jun-lan(School of Electronic and Information,Zhongyuan University of Technology,Zhengzhou 450007,China;School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China;Zhongyuan-Petersburg Aviation College,Zhongyuan University of Technology,Zhengzhou 450007,China)
出处 《控制工程》 CSCD 北大核心 2021年第11期2266-2272,共7页 Control Engineering of China
基金 国家自然科学基金资助项目(U1813201,62073297) 河南省科技攻关项目(202102210097,202102210135)。
关键词 步态数据 RBF神经网络 下肢康复机器人 三维动作捕捉系统 前馈控制 Gait data radial basis function(RBF)neural network lower limb rehabilitation robot 3D motion capture system feedforward control
  • 相关文献

参考文献4

二级参考文献29

  • 1陈启军,张宏辉,王月娟,陈辉堂.一种简单的机器人鲁棒自适应轨迹跟踪控制算法[J].华中科技大学学报(自然科学版),2004,32(S1):52-54. 被引量:5
  • 2王金敏,崔奇,初楠.运用三次样条曲线拟合机器人运动路径[J].机械设计,2005,22(7):44-46. 被引量:4
  • 3刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008.
  • 4KWAN C M, YESILDIREK A, LEWIS F L. Robus force/motion control of constrained robots using neura net network[J]. Journal of Robotic Systems, 1999, 12(16): 697-714.
  • 5CHIU C S, LIAN K Y, WU T C. Robust adaptive motion/ force tracking control design for uncertain constrained robot manipulators [J]. Automatica, 2004, 40 : 2111-2119.
  • 6STEFANO C, BRUNO regulation of compliant Trans. Automatic, 1994, S, LUIGI V. Force/position robot manipulators[J]. IEEE 39(3): 647-652.
  • 7ZOE D, SUGURU A. A position/force control for a robot finger with soft tip and uncertain kinematics[J]. Journal of Robotic Systems, 2002, 44(4): 115-131.
  • 8STEFANO C, BRUNO S, LUIGI V. Force and position tracking: Parallel control with stiffness adaptation[J].IEEE Control Systems, 1998, 18(1): 27-33.
  • 9SEUL J, HSIA T C. Robust neural force control scheme under uncertainties in robot dynamics and unknown environment[J]. IEEE Trans. Ind. Electron., 2000, 47(2): 403-412.
  • 10MOSTEFAI L, DENAI M, HORI Y. Robust tracking controller design with uncertain friction compensation based on a local modeling approach[J]. Mechatronics, IEEE/ASME Trans., 2009, 15: 746-756.

共引文献51

同被引文献83

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部