期刊文献+

基于CEEMD散布熵和Hjorth参数的混合特征滚动轴承故障诊断研究 被引量:10

Rolling bearing fault diagnosis based on mixed characteristic ofCEEMD dispersion entropy and Hjorth parameters
下载PDF
导出
摘要 由于依靠单一的物理特征难以全面反映机械的故障信息,针对这一问题,对机器学习中常用的故障特征提取方法进行了研究,在此基础上提出了一种基于完备总体经验模态分解(CEEMD)、散布熵(DE)和Hjorth参数的混合特征滚动轴承故障诊断方法。首先,基于CEEMD对轴承原始信号进行分解,得到了若干个固有模态函数(IMF)分量;然后,根据与原信号的相关性选取敏感IMF分量,并求出其DE和Hjorth参数,形成散布熵特征向量和Hjorth参数矩阵,再对Hjorth参数矩阵进行奇异值分解,提取出奇异值作为特征向量,并将该向量与散布熵特征向量形成混合特征向量;最后,利用基于粒子群优化算法的最小二乘支持向量机(LSSVM),对滚动轴承不同故障特征向量进行了训练和识别。研究结果表明:该方法能够准确地诊断出滚动轴承的故障类型和程度,突出不同故障的特征;与采用单一特征的方法相比,该方法能更准确地辨别出滚动轴承的故障信息,采用该方法获得的故障识别率可达到100%。 Aiming at problems of a single physical feature being difficult to fully reflect fault information,the common fault feature extraction methods in machine learning were studied.A mixed feature fault diagnosis method based on complete ensemble empirical mode decomposition(CEEMD),dispersion entropy(DE)and Hjorth parameters was proposed.Firstly,the bearing signal was decomposed by CEEMD to obtain intrinsic mode function(IMF)components.Secondly,the sensitive IMFs were chosen by using the correlation with the original signal to calculate its DE and Hjorth parameters,and formed DE feature vector and Hjorth parameter matrix.Then the singular value decomposition(SVD)was applied to transform Hjorth parameter matrix into a singular value vector,and a mixed feature vector was formed with the singular value and DE feature vector.Finally,the least square support vector machine(LSSVM)based on particle swarm optimization(PSO)was used to train and identify different fault feature vectors.The results indicate that the method can accurately diagnose the fault type and degree of rolling bearings,and highlight the characteristics of different faults.Comparing with the method using single feature,the recognition rate reaches 100%after using this method,it can identify the fault information more accurately.
作者 夏理健 刘小平 王新 田笑 张立杰 XIA Li-jian;LIU Xiao-ping;WANG Xin;TIAN Xiao;ZHANG Li-jie(Key Laboratory of Advanced Forging&Stamping Technology and Science,Ministry of Education of China,Yanshan University,Qinhuangdao 066004,China;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University,Qinhuangdao 066004,China)
出处 《机电工程》 CAS 北大核心 2021年第12期1564-1571,共8页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(51875499)。
关键词 滚动轴承 故障诊断 混合特征提取 完备总体经验模态分解 散布熵 Hjorth参数 奇异值分解 rolling bearing fault diagnosis mixed characteristic extraction complete ensemble empirical mode decomposition(CEEMD) dispersion entropy(DE) Hjorth parameter singular value decomposition(SVD)
  • 相关文献

参考文献7

二级参考文献47

共引文献170

同被引文献110

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部