期刊文献+

有界噪声激励下系统随机共振的改善 被引量:2

IMPROVEMENT OF STOCHASTIC RESONANCE UNDER BOUNDED NOISE EXCITATION
下载PDF
导出
摘要 为了考察有界噪声参数改变对系统随机共振的影响,本文研究了三个典型随机系统的输出.通过随机Runge-Kutta法对方程进行离散,计算长时间历程下系统的响应.结果表明,改变有界噪声的平均频率Ω及参数σ,可以有效地改善有界噪声系统的随机共振行为,且存在ω-Ω数值关系可使得共振效果最佳.随着平均频率的增加,随机共振的峰值会呈现增大且偏移的状态,而σ的增大却往往会抑制随机共振现象.为了验证结果的可靠性,本文建立了Simulink模型,通过仿真实验可得到相同的结论. In order to study the effects of bounded-noise parameters’ change on system stochastic resonance(SR),the outputs of three typical systems are investigated. Stochastic Runge-Kutta method is used to discretize the equations and calculate system response in a extend period. The results demonstrate that the SR can be effectively improved by changing the mean frequency and parameters σ of the bounded noise,and the resonance effect can be optimized by the existence of ω-Ω numerical relations. With the increase of mean frequency,the peak value of SR will increase and deviate,but the enlargement of σ will suppress the phenomenon of SR. To verify the above results,we establish Simulink models,and the same conclusion can be obtained through the simulation experiment.
作者 张强 王剑龙 李扬 刘先斌 Zhang Qiang;Wang Jianlong;Li Yang;Liu Xianbin(College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《动力学与控制学报》 2021年第6期52-58,共7页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11472126,11232007) 江苏省高等学校重点学科建设资助项目(PAPD)。
关键词 有界噪声 随机共振 ω-Ω数值关系 SIMULINK仿真 bounded noise stochastic resonance ω-Ωnumerical relationship simulation in Simulink
  • 相关文献

参考文献5

二级参考文献72

  • 1林敏,黄咏梅.调制与解调用于随机共振的微弱周期信号检测[J].物理学报,2006,55(7):3277-3282. 被引量:48
  • 2Du L C and Mei D C 2009 Chin. Phys. B 18 946.
  • 3Hanggi P Jung P Zerbe C and Moss F 1993 J. Stat. Phys. 70 25.
  • 4Jing G X, Zhang L Y and Cao L 2009 Chin. Phys. B 18 952.
  • 5Neiman A and Schimansky-Geier L 1994 Phys. Rev. Lett. 72 2988.
  • 6Nozaki D, Collins J J and Yamamoto Y 1999 Phys. Rev. E 60 4637.
  • 7Cai G Q and Wu C 2004 Prob. Eng. Mech. 19 197.
  • 8Zhu W Q, Huang Z L, Ko J M and Ni Y Q 2004 Y. Sound Vib. 274 701.
  • 9Huang Z L and Zhu W Q 2004 Prob. Eng. Mech. 19 219.
  • 10Lei Y M and Xu W 2007 Acta Phys. Sin. 56 5103 (in Chinese).

共引文献34

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部