期刊文献+

半群PC_(n)的极大幂等元生成子半群 被引量:2

Maximal idempotent-generated subsemigroups of the semigroup PC
原文传递
导出
摘要 考虑有限链上的保序且降序部分变换半群设PC_(n),通过对其幂等元的分析,得到了半群PC_(n)的极大子半群和极大幂等元生成子半群的完全分类。 The authors studied the semigroup PC_(n), consisting of all partial decreasing and order-preserving transformations on a finite chain. Analyzing the idempotent elements, completely obtained the classification of the maximal subsemigroups as well as the maximal idempotent-generated subsemigroups of the semigroup PC_(n).
作者 张传军 赵海清 ZHANG Chuan-jun;ZHAO Hai-qing(School of Mathematics and Big Data,Guizhou Education University,Guiyang 550001,Guizhou,China;School of Mathematics and Statistics,Lingnan Normal University,Zhanjiang 510006,Guangdong,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第12期7-10,32,共5页 Journal of Shandong University(Natural Science)
基金 2019年贵州省高等学校教学内容和课程体系改革项目(2019083) 2020年贵州省普通高等学校青年科技人才成长项目(黔教合KY字[2021]250) 2020年贵州省教育厅高校人文社会科学研究基地项目(2021JD040) 2021年贵州师范学院校级博士启动基金项目(2021BS001) 教育部产学合作协同育人项目(201802151033) 岭南师范学院人才专项(ZL2037)。
关键词 保序 降序 极大子半群 极大幂等元生成子半群 order-preserving decreasing maximal subsemigroup maximal idempotent-generated subsemigroup
  • 相关文献

参考文献2

二级参考文献21

  • 1Dénes, J.: On Transformations, Transformation semigroups and Graphs, Theory of Graphs. Proe. Colloq.Tihany, 65-75 (1966).
  • 2Bayramov, P. A.: On the problem of completeness in a symmetric semigroup of finite degree (in Russian).Diskret Analiz, 8, 3-27 (1966). MR 34, 7682.
  • 3Liebeck,M. W, Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111,365-383 (1987).
  • 4Todorov, K., Kracolova, L.: On the maximal subsemigroups of the ideals of finite symmetric semigroups.Simon Stevin, 59(2), 129-140 (1985).
  • 5Yang, X. L.: Maximal subsemigroups of finite singular transformation semigroups. Communications in Aloebra, 29(3), 1175-1182 (2001).
  • 6Yang, X. L.: A classification of maximal inverse subsemigroups of the finite symmetric inverse semigroups.Communications in Algebra, 2T(8), 4089-4096 (1999).
  • 7Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
  • 8Tetrad, S.: Unsolved problems in semigroup theory (in Russian). Sverdlovsk, 1969; (Engl. Transl., Semiqroup Forum, 4 , 274-280 (1972)). MR 42, 7807.
  • 9Fountain, J. M.: Abundant semigroups. Proc. London Math. Soc. (3), 44, 103-129 (1982).
  • 10Evseev,A. E,Podronl N,E.Semigroups of transformations generated by idempotents of given defect, lzv.Vyssh. Uchebn. Zaved. Mat., 2(117), 44-50 (1972).

共引文献24

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部