期刊文献+

Weighted ■_(p)-Minimization for Sparse Signal Recovery under Arbitrary Support Prior

原文传递
导出
摘要 Weighted ■_(p)(0<p<l)minimization has been extensively studied as an effective way to reconstruct a sparse signal from compressively sampled measurements when some prior support information of the signal is available.In this paper,we consider the recovery guarantees of Κ-sparse signals via the weighted ■_(p)(0<P<1)minimization when arbitrarily many support priors are given.Our analysis enables an extension to existing works that assume only a single support prior is used.
出处 《Analysis in Theory and Applications》 CSCD 2021年第3期289-310,共22页 分析理论与应用(英文刊)
基金 supported by the NSF of China(Nos.11871109,11901037 and 11801509) NSAF(Grant No.U1830107),CAEP Foundation(Grant No.CX20200027).
  • 相关文献

参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部