期刊文献+

基于深度网络的雷达信号分选 被引量:2

Radar Signal Sorting Based on Deep Network
下载PDF
导出
摘要 采用传统方法对雷达信号进行分选时,会因为模型准确度低而需要根据外部情况人工调整多个参数以适应电磁环境,而且对复杂环境和多功能雷达的适应性差。基于图像处理方法,将混合雷达信号的脉冲描述字(PDW)编码为图像,选取相应的深度网络,对编码后的图像进行图像语义分割训练,将训练完成的模型用于雷达信号分选,可使信号分选流程智能化,且具有较高的分选准确率。 When the traditional method is used to sort radar signals,it is need to manually adjust several parameters according to the external situation for adapt to the electromagnetic environment because of the low accuracy of the model,and the method has poor adaptability to the complex environment and multifunctional radar.Based on the image processing method,this paper encodes the pulse description words(PDW)of hybrid radar signal into images,selects the corresponding deep network to train the encoded image for image semantic segmentation,and uses the trained model for radar signal sorting,which makes the signal sorting process intelligent and has better sorting accuracy.
作者 张旭威 黎仁刚 王一鸣 ZHANG Xu-wei;LI Ren-gang;WANG Yi-ming(The 723 Institute of CSIC,Yangzhou 225101,China)
出处 《舰船电子对抗》 2021年第6期73-77,共5页 Shipboard Electronic Countermeasure
关键词 信号分选 深度学习 脉冲描述字 图像语义分割 signal sorting deep learning pulse description word image semantic segmentation
  • 相关文献

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部