期刊文献+

人工智能电话随访在高血压随访管理中的应用 被引量:13

The application of artificial intelligence telephone follow-up in the management of hypertension follow-up
原文传递
导出
摘要 目的评价人工智能电话随访(以下简称AI随访)的接通采集情况与识别准确性,为应用于高血压随访管理提供可行性依据。方法于2019年4月18日至5月9日,对打浦桥街道社区卫生服务中心的4 486例在管高血压患者进行AI随访,分析总体信息采集率及完整信息采集率;并在有效接通的2 476例患者中随机抽取10%,由调查员重听原始录音并记录抽取的248例患者的随访情况,进一步分析AI识别的准确性。采用SPSS 22.0软件进行χ^(2)检验和趋势χ^(2)检验。结果总体信息采集率为53.5%,随患者年龄的增长而升高,<60、60~69、70~79、≥80岁组分别为46.5%、53.9%、55.9%和54.1%;工作日的采集率(55.1%)高于双休日(47.8%),差异均有统计学意义(P<0.05)。完整信息采集率为45.2%,随患者年龄的升高而降低(P<0.05),<60、60~69、70~79、≥80岁组分别为52.9%、46.7%、46.3%和35.5%。各题的采集率随序次增长而下降,差异有统计学意义(P<0.01)。AI识别总体准确性为90.2%,且不同性别、年龄组、拨打时间对应的准确率差异均无统计学意义(P>0.05)。结论 AI随访具有一定的信息采集效率和较高的识别准确性,应用于社区慢性病随访能降低社区医生工作量,在大规模慢性病人群随访中具有良好的应用前景。 Objective To evaluate the collection efficiency and identification accuracy of artificial intelligence telephone follow-up(AI follow-up),and provide the feasible basis for application in the management of hypertension follow-up. Methods A total of4 486 hypertension patients in management at Dapuqiao Community Health Service Center were followed up by artificial intelligence telephone(AI) from April 18 to May 9 in 2019,the overall information collection rate and the complete information collection rate were analyzed. Then 10% of the 2 476 patients who were effectively connected were selected randomly. The investigators listened the original recordings again and recorded the content of the selected 248 patients for further analysis of the accuracy of AI recognition. The χ^(2)test and trend χ^(2)test were used to analyze the data. The used software was SPSS 22.0. Results The overall information collection rate was 53.5%,which increased with age(the collection rates of <60,60-69,70-79,≥80 years old groups were 46.5%,53.9%,55.9% and 54.1%,respectively). And the collection rate on working days was higher than that on weekends(55.1% and 47.8%,respectively),P <0.05. The complete information collection rate was 45.2%,which decreased with age(the collection rates of <60,60-69,70-79,≥80 years old groups were 52.9%,46.7%,46.3% and 35.5%,respectively),P<0.01. The overall accuracy of AI recognition was 90.2%,and there were not significant differences between groups with different gender,age and follow-up time(P>0.05). Conclusion The AI telephone follow-up system has information collection efficiency to a certain extent and high recognition accuracy. The application of AI follow-up can reduce the workload of community doctors and have a good application prospect for large-scale follow-up of chronic diseases.
作者 王思源 周峰 高俊岭 高嘉宝 王玉恒 杨沁平 谢贇 施燕 付晨 程旻娜 WANG Si-yuan;ZHOU Feng;GAO Jun-ling;GAO Jia-bao;WANG Yu-heng;YANG Qin-ping;XIE Yun;SHI Yan;FU Chen;CHENG Min-na(Division of Non-communicable Disease and Injury,Shanghai Municipal Center for Disease Control and Prevention,Huangpu Center for Disease Control and Prevention,Shanghai 200023,China;不详)
出处 《中国慢性病预防与控制》 CAS CSCD 北大核心 2021年第11期817-820,共4页 Chinese Journal of Prevention and Control of Chronic Diseases
基金 上海市加强公共卫生体系建设三年行动计划(2020—2022年)(GWV-7) 上海市公共卫生体系建设三年行动计划学科建设项目(GWV-10.1-XK05)。
关键词 慢性病 高血压 电话随访 人工智能 可行性 Chronic diseases Hypertension Telephone follow-up Artificial intelligence Feasibility
  • 相关文献

参考文献11

二级参考文献83

共引文献163

同被引文献186

引证文献13

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部