期刊文献+

众源矢量数据分块纠正研究 被引量:1

Research on Block Correction of Crowd Sourcing Vector Data
下载PDF
导出
摘要 众源矢量数据能够提供丰富的地理信息,但存在几何误差分布不均匀问题。针对众源矢量数据几何误差问题,本文提出一种众源矢量数据分块纠正方法。以遥感影像作为标准数据,通过模板匹配得到遥感影像与众源矢量数据的同名点,根据同名点的几何误差分布对众源矢量数据切分及分块纠正,最后拼接纠正结果实现众源矢量数据的纠正。本文以上海市OpenStreetMap矢量道路网作为实验数据进行分块纠正实验,实验结果表明分块纠正后众源矢量数据几何误差显著降低。 Crowd sourcing vector data provides rich geographic information,but there is a problem of uneven geometric error distribution.Aiming at the geometric error of crowd sourcing vector data,this paper proposes a block correction method for crowd sourcing vector data.Using remote sensing image as standard data,the same-named point of remote sensing image and crowd sourcing vector data is obtained through template matching.The crowd sourcing vector data is segmented and corrected according to the geometric error distribution of the same-named point,and finally Stitching correction results to achieve correction of crowd sourcing vector data.In this paper,the Shanghai OpenStreetMap vector road network is used as experimental data to carry out block correction experiments.The experimental results show that the geometric errors of the crowd source vector data are significantly reduced after block correction.
作者 邵鑫 王艳东 豆明宣 SHAO Xin;WANG Yandong;DOU Mingxuan(State Key Laboratory of Information Engineer in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China;Collaborative Innovation Center of Geospatial Technology,Wuhan 430079,China)
出处 《测绘与空间地理信息》 2021年第12期11-14,18,共5页 Geomatics & Spatial Information Technology
基金 国家重点研发计划(2016YFB0501403) 国家自然科学基金(41271399) 测绘地理信息公益性行业科研专项经费(201512015)资助
关键词 众源矢量数据 分块纠正 模板匹配 DBSCAN 泰森多边形 crowd sourcing vector data block correction template matching DBSCAN Tyson polygon
  • 相关文献

参考文献4

二级参考文献30

共引文献164

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部