期刊文献+

基于移动平均及LSTM组合模型的火电厂日发电量预测研究 被引量:4

Research on the Forecast of Daily Power Generation Capacity of Thermal Power Plants Based on the Combined Model of Moving Average and LSTM
下载PDF
导出
摘要 为了解决火电企业在制定发电计划过程中缺乏科学指导的问题,提出一种基于趋势移动平均法及长短期记忆网络(LSTM)组合模型的发电量预测方法。首先分别建立移动平均预测模型和LSTM预测模型,然后使用最小二乘法取不同权重将两者预测模型相结合得到一个新的预测模型。以上海某电厂2018年〜2020年每日的发电量数据作为实例验证。结果表明,所提出的预测方法相对于传统发电量预测方法、简单移动平均和标准LSTM预测方法具有更高的精确度。 In order to solve the problem that thermal power companies lack scientific guidance in the process of making power generation plans,a power generation forecasting method based on trend moving average method and long short-term memory network(LSTM) combined model is proposed.Firstly,the moving average prediction model and the LSTM prediction model are established respectively,and then the least square method is used to take different weights to combine the two prediction models to obtain a new prediction model.Take the daily power generation data of a power plant in Shanghai from 2018 to 2020 as an example verification.The results show that the proposed prediction method has higher accuracy than traditional power generation prediction methods、simple moving average and standard LSTM prediction methods.
作者 程鹏远 茅大钧 胡涛 CHENG Pengyuan;MAO Dajun;HU Tao
出处 《青海电力》 2021年第4期7-10,26,共5页 Qinghai Electric Power
关键词 移动平均 LSTM 组合模型 发电量预测 moving average LSTM combined model power generation forecast
  • 相关文献

参考文献6

二级参考文献53

共引文献99

同被引文献69

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部