摘要
设计具有多孔结构、比表面积大的高性能电极材料对于发展高能量密度的超级电容器尤为重要。本文报道以共价有机骨架材料为前驱体,通过简单热处理构建出一种氮掺杂的多孔碳纳米材料作为超级电容器电极材料。该材料显示出高导电性和高表面积,其应用于超级电容器作为负极时表现出高的面积比容量。在电流密度为1mA·cm^(-2)时,其面积比容量可达266.58mF·cm^(-2);即使电流密度为20mA·cm^(-2)时,面积比容量仍保持71.7%,表现出很好的倍率性能;并且,该材料循环3000圈后依然具有84.8%的容量保持率。阻抗测试表明,这种碳材料的电等效电阻约为0.9Ω。本工作提出的共价有机骨架衍生的氮掺杂的多孔碳具有优越的电化学性能,为发展高性能超级电容器提供了新的方向。
The design of high-performance electrode materials with porous structure and high specific surface area is crucial for the development of supercapacitors with high energy density. Herein, a unique nanomaterial derived from covalent organic framework(COF) is constructed as a supercapacitor electrode material by a simple heat treatment, which shows the advantages of high conductivity and high surface area. When applied to supercapacitor as negative electrode, it exhibits high area specific capacity, and the specific capacitance reaches up to 266.58 mF·cm^(-2)at the current density of 1 mA·cm^(-2). Even at the current density of 20 mA·cm^(-2), the area specific capacity of C-COF still maintains 71.7%, showing good rate performance. Moreover, the material still has a capacity retention rate of 84.8% after 3000 cycles. The impedance test showed that the electrical equivalent resistance of the C-COF material is about 0.9 Ω. The carbon-based materials derived from COF proposed in this work have superior electrochemical properties, which provide a new visual for the development of high-performance supercapacitors.
作者
王俊
叶常春
苏明
张凯
蔡松亮
Wang Jun;Ye Changchun;Su Ming;Zhang Kai;Cai Songliang(College of Information Engineering,Zhongshan Vocaional and Teehnieal College,Zhongshan,528404;School of Environment and Energy,South China l niversily of Teehnology.Guangzhou,510006;School of Chemistry,South China Normal Universily.Guangzhou,510006)
出处
《化学通报》
CAS
CSCD
北大核心
2021年第12期1356-1361,1249,共7页
Chemistry
基金
中山职业技术学院校级科研项目(2018KQ04)
广东省教育厅特色创新(自科)类项目(2020KTSCX331)
中山市社会公益与基础研究项目(2020B2029)
广东省科技创新战略专项资金项目(PDJH2020A1280)资助。
关键词
共价有机骨架材料
超级电容器
碳基材料
负极材料
Covalent organic framework materials
Supercapacitors(COFs)
Carbon-based materials
Anode material