摘要
为了尽可能满足多样化的出行需求,同时又能照顾到城市经济以及不同出行方式的发展需求,城市交通管理部门需要根据所有出行方式的长期价值贡献来优化其内部结构。为此,一方面基于状态依赖效用函数和Logit模型建立了能反映这种长期收益的动态规划模型,该模型的状态变量是具有Markov性质的方式占比,且引入了前次供给方式来反映其对当前决策的影响;另一方面则利用层次贝叶斯方法中的MCMC算法对供给概率模型中各因素的权重进行了估计,以体现因素权重的差异性。最后,根据新方式动态共乘的占比构造了四种出行方式的市场结构,并计算了前次供给为不同方式的状态转移概率矩阵,通过仿真实验展示了最优策略与总收益的关系、期初和期末出行结构的差异、总收益对方式供给概率的影响,以及动态共乘与前次供给和总收益的关系。
In order to sufficiently satisfy various travel demands and in the meantime take into account the development of urban economy and different travel modes,transportation management department has to optimize the travel mode structure according to the long-term contribution of all modes.Based on state-dependent utility function and logit model,this study builds a dynamic programming model which incorporates mode shares as the state variable as well as previous supply to reflect the influence of state inertial.MCMC algorithm from hierarchical Bayes method is introduced to estimate the weights of factors in the logit model.Then a four-share structure by the given shares of dynamic ridesharing and a transition probability matrix given the previous supply are constructed respectively.The simulation experiment displays the relationship of optimal policy and total revenue,the relationship of DR with previous supply and total revenue,the difference of mode structure between the beginning and end of period and,influence of total revenue on mode supply probability.
作者
侯立文
Hou Liwen(Antai College of Economics and Management,Shanghai Jiaotong University,Shanghai 200030)
出处
《管理评论》
CSSCI
北大核心
2021年第10期289-296,共8页
Management Review
基金
国家自然科学基金项目(72171146,71372108)。
关键词
出行结构
动态共乘
状态依赖效用
动态规划模型
travel model
dynamic ridesharing
state-dependent utility
dynamic programming model