期刊文献+

Magnetic moment predictions of odd-A nuclei with the Bayesian neural network approach 被引量:1

原文传递
导出
摘要 The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large root-mean-square(rms)deviations from data,i.e.,0.949μN and 1.272μN for odd-neutron nuclei and odd-proton nuclei,respectively.By including the dependence of the nuclear spin and Schmidt magnetic moment,the machine-learning approach precisely describes the magnetic moments of odd-A uclei with rms deviations of 0.036μN for odd-neutron nuclei and 0.061μN for odd-proton nuclei.Furthermore,the evolution of magnetic moments along isotopic chains,including the staggering and sudden jump trend,which are difficult to describe using nuclear models,have been well reproduced by the Bayesian neural network(BNN)approach.The magnetic moments of doubly closed-shell±1 nuclei,for example,isoscalar and isovector magnetic moments,have been well studied and compared with the corresponding non-relativistic and relativistic calculations.
作者 Zilong Yuan Dachuan Tian Jian Li Zhongming Niu 袁子龙;田大川;李剑;牛中明(College of Physics,Jilin University,Changchun 130012,China;School of Physics and Materials Science,Anhui University,Hefei 230601,China;Institute of Physical Science and Information Technology,Anhui University,Hefei 230601,China)
出处 《Chinese Physics C》 SCIE CAS CSCD 2021年第12期147-154,共8页 中国物理C(英文版)
基金 Supported by the National Natural Science Foundation of China(11675063,11875070,11205068) the Open fund for Discipline Construction,Institute of Physical Science and Information Technology,Anhui University。
  • 相关文献

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部