期刊文献+

基于计算力矩法的骨折复位机器人系统仿真 被引量:1

Simulation of Fracture Reduction Robot Control System Based on Computational Torque Method
下载PDF
导出
摘要 针对传统骨折复位手术存在的复位精度低,对抗肌张力时十分耗费医生体能等缺点,设计了一种基于并联机构的骨折复位机器人。利用Simulink工具箱搭建了运动学分析系统,对机构进行了逆运动学分析。基于运动学分析的结果,运用拉格朗日法建立了该骨折复位机器人的动力学模型,探究了平台位姿与关节驱动力及平台受力的关系。最后在关节空间中根据骨折复位机构的逆动力学模型建立了控制器。通过设定平台运动轨迹,观察控制各驱动杆需要的力及平台受力情况,验证了控制器设计的正确性及控制规律的有效性。上述研究为实际机器人控制器设计及控制系统开发提供了理论支持。 Considering the shortcomings of traditional fracture reduction surgery,such as low reset accuracy and great expenditure of physical energy against muscular tension,a fracture reduction robot based on parallel mechanism was designed.A kinematic analysis system was built using the Simulink toolbox,and the system was used to analyze the kinematic of the mechanism.Based on the results of kinematics analysis,the dynamic model of fracture reduction robot was established using Lagrange method,and the relationship between platform posture,joint driving force,and platform force was discussed.Finally,an inverse dynamic model controller for fracture reduction mechanism was established in joint space.By setting the trajectory of the platform,we observed the force required to control each drive rod and the force received by platform,and further verified the correctness of the controller design and effectiveness of control law.
作者 董鑫宇 孙昊 郭悦 傅卓鑫 DONG Xin-yu;SUN Hao;GUO Yue;FU Zhuo-xin(Hebei University of Technology,Tianjin 300132,China;National Rehabilitation Aids Research Center Affiliated Rehabilitation Hospital,Beijing 100176,China)
出处 《计算机仿真》 北大核心 2021年第10期372-378,共7页 Computer Simulation
基金 北京市科委项目“首都特色临床应用研究”重点项目(Z181100001718194)。
关键词 骨折复位机器人 动力学 拉格朗日法 计算力控制 Fracture reduction robot Dynamic Lagrange method Computed-torque Control
  • 相关文献

参考文献4

二级参考文献25

  • 1冷昆鹏,张殿英.肱骨近端骨折分型的现状[J].中华肩肘外科电子杂志,2014,2(2):111-113. 被引量:18
  • 2赵强,阎绍泽.双端虎克铰型六自由度并联机构的动力学模型[J].清华大学学报(自然科学版),2005,45(5):610-613. 被引量:19
  • 3吴军,李铁民,唐晓强.平面并联机构的鲁棒轨迹跟踪控制[J].清华大学学报(自然科学版),2005,45(5):642-646. 被引量:3
  • 4Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach[J]. Mechanism and Maehine Theory, 1998, 33(7): 993-1012.
  • 5Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator [J]. Mechanism and Machine Theory, 1998, 33(8): 1135-1152.
  • 6Tsai L W. Solving the inverse dynamics of a Stewart- Gough manipulator by the principle of virtual work [J]. ASME Journal of Mechanical Design, 2000, 122 (1): 3-9.
  • 7Guo H B, Li H R. Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator[J]. J Mechanical Engineering Science, 2006, 220 (1) : 61-72.
  • 8Vakil M, Pendar H. Comments to the: "Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach" and "A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator"[J]. Mechanism and Machine Theory, 2008, 43(10): 1 349-1 351.
  • 9Wang J, Gosselin C M. A new approach for the dynamic ananlysis of parallel manipulators[J]. J Robotic Systems, 1998, 2(3): 317-334.
  • 10Tsai L W.Solving the inverse dynamics of parallel manipulators by the principle of virtual work.In Proc.ASME design engineering Technical Conferences,1998

共引文献78

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部