期刊文献+

基于SceneCaps的场景图像识别

Scene Image Recognition Based on SceneCaps
下载PDF
导出
摘要 场景识别是计算机视觉领域重要的研究方向。采用传统神经网络的场景识别方法对数据需求量较大、训练时间较长且不能捕捉图像的空间关系,对复杂的场景图像识别有一定的局限性。针对这一问题,在CapsNet(胶囊网络)的基础上,提出SceneCaps模型,并在Scene15和Places2数据集上进行实验。实验表明,与CapsNet模型相比,SceneCaps模型在Scene15和Places2数据集上的识别精度分别平均提高了0.25%和0.03%,训练速度分别平均提高了29%和69%,验证了该模型的有效性。 Scene recognition is an important research direction in the field of computer vision.The traditional scene recognition method based on neural network requires a lot of data,takes a long time to train and cannot capture the spatial relationship of images.To address this problem,a SceneCaps model based on capsule network(CapsNet)was proposed in this paper,and experiments were conducted on Scene15 and Places2 data sets.The experimental results show that compared with CapsNet model,the recognition accuracy rates of SceneCaps model on Scene15 and Places2 datasets are increased by 0.25%and 0.03%respectively,and the training speeds are increased by 29%and 69%respectively.
作者 王峰 蔡春花 WANG Feng;CAI Chun-hua(Key Laboratory of Grain Information Processing and Control(Henan University of Technology),Ministry of Education,Zhengzhou Henan 450000,China;College of Information Science and Engineering,Henan University of Technology,Zhengzhou Henan 450000,China)
出处 《计算机仿真》 北大核心 2021年第10期476-481,491,共7页 Computer Simulation
基金 河南省高等学校重点科研计划项目(19A520020) 河南工业大学大学生创新重点训练计划项目(201918) 河南工业大学科教融合项目(201822)。
关键词 场景图像 识别 仿真 Scene images Recognition Simulation
  • 相关文献

参考文献1

二级参考文献2

  • 1Malcolm D. Shuster . A Survey of Attitude Representations.The Journal of Austronautical Science, Vol.41, No.4, October-December 1993:439-517.
  • 2吴广玉.机器人工程导论[M].哈尔滨工业大学出版社,1989..

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部