期刊文献+

TiB_(2)/AlSi10Mg选区激光熔化成形组织与性能 被引量:6

Microstructure and Properties of TiB_(2)/AlSi10Mg Composite Prepared by Selective Laser Melting
下载PDF
导出
摘要 采用选区激光熔化成形技术(SLM)制备AlSi10Mg合金和TiB_(2)/AlSi10Mg复合材料,利用XRD、SEM、TEM、万能拉伸实验机和维氏硬度计等对TiB_(2)/AlSi10Mg复合材料的力学性能、组织结构等进行了表征分析。结果表明:AlSi10Mg合金中加入增强相TiB_(2)后,其SLM成形件的致密度、屈服强度和断裂强度分别由96.8%、156.3 MPa和366.3 MPa增加至99.4%、170.1 MPa和413.4 MPa。TiB_(2)/AlSi10Mg成形件屈服强度的提升主要来源于Orowan强化、弥散强化和细晶强化。与此同时,TiB_(2)增强相的添加使得裂纹源增加,大幅度降低了AlSi10Mg合金的塑性(从8.5%下降到4.2%),其断裂机制由准解理断裂转变为解理断裂。 AlSi10Mg alloy and TiB_(2)/AlSi10Mg composite alloy were prepared by selective laser melting(SLM),and then the microstructure and mechanical properties were characterized and analyzed by X-ray diffraction(XRD),SEM,TEM,tensile test machine and Vickers hardness tester.The results indicate that once the TiB_(2) particles added into AlSi10Mg,density,yield strength and fracture strength of the SLM AlSi10Mg alloy were improved from 96.8%,156.3 MPa and 366.3 MPa to 99.4%,170.1 MPa and 413 MPa,respectively.The raise of yield strength of TiB_(2)/AlSi10Mg is the result of Orowan strengthening,dispersion strengthening and fine grain strengthening.Moreover,crack source increases with the addition of TiB_(2),and the plasticity reduces from 8.5%to 4.2%.The fracture mechanism changes from quasi-cleavage fracture to cleavage fracture.
作者 张堃 吴姚莎 刘晓飞 王丽荣 曾思惠 ZHANG Kun;WU Yaosha;LIU Xiaofei;WANG Lirong;ZENG Sihui(Institute of Intelligent Equipment Manufacturing,Zhongshan Torch Polytecnic,Zhongshan 528436,China;Gent Materials Surface Technology(Guangdong) Co.,Ltd.,Zhongshan 528437,China)
出处 《有色金属工程》 CAS 北大核心 2021年第12期43-49,56,共8页 Nonferrous Metals Engineering
基金 广东省普通高校青年创新人才项目(2018GKQNCX015,2019GKQNCX132,2019GKQNCX137) 广东省普通高校特色创新项目(2020KTSCX324,2020KTSCX327)。
关键词 TiB_(2) AlSi10Mg 选区激光熔化 组织结构 力学性能 TiB_(2) AlSi10Mg selective laser melting microstructure mechanical property
  • 相关文献

参考文献3

二级参考文献23

  • 1D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (3) (2012) 133-164.
  • 2Wohlers Report 2014, 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, ISBN 978-0-9913332-0-2.
  • 3S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Int. J. Adv. Manuf. Technol. 67 (2013) 1191-1203.
  • 4W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917-1928.
  • 5N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des. 65 (2015) 417-424.
  • 6B. Vandenbroucke, J.-P. Kruth, Rapid Prototyping J. 13 (2007) 196-203.
  • 7B. Song, S. Dong, B. Zhang, H. Liao, C. Coddet, Mater. Des. 35 (2012) 120-125.
  • 8K. Guan, Z. Wang, M. Gao, X. Li, X. Zeng, Mater. Des. 50 (2013) 581-586.
  • 9ASM Metals Handbook, vol. 1, Selection of Irons, Steels and High Performance Alloys, ASM International, 2005.
  • 10J,-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J, Van Humbeeck, "Part and Material Properties in Selective Laser Melting of Metals", 16th International Symposium on Electromachining, Shanghai Jiao Tong University Press, 2010, Shanghai, China.

共引文献53

同被引文献54

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部