期刊文献+

基于二次调频小波变换的时变系统物理参数识别 被引量:2

Physical Parameter Identification of Time-varying Systems Based on Quadratic Chirplet Transform
下载PDF
导出
摘要 基于二次调频小波理论,提出函数积分运算的二次调频小波变换计算方法。应用此方法,仅利用时变结构的加速度响应信号就可以重构出速度和位移响应信号并将振动微分方程转换为线性方程。为解决随机激励下参数识别问题,进一步结合分数阶模糊函数推导二次调频信号的自相关性理论,得出相关系数与时变物理参数的线性表达式进而识别各时刻的物理参数。以一个4自由度时变结构为仿真算例,识别线性变化、周期变化、二次函数变化、快速突变4种不同类型的时变物理参数,验证了识别方法的正确性。 Based on the theory of quadratic chirplet,a method of the quadratic chirplet transform with function integral operation is proposed,by which,the acceleration response signal of the time-varying structure is merely used to reconstruct the speed and displacement response signal and to transform vibration differential equation into linear one.To solve the problem of parameter identification under random excitation,by further combining with the fractional ambiguity,the autocorrelation theory of the quadratic frequency modulation signal is derived to abtain the linear expression of correlation coefficient and time-varying physical parameters,so as to identify the physical parameters of each time.With a 4-iDOF time-varying structure as a simulation example,four different types of time-varying physical parameters such as linear change,periodic change,quadratic function change and rapid mutation are identified,which verifies the correctness of the identification method.
作者 赵宗爽 史治宇 张杰 ZHAO Zongshuang;SHI Zhiyu;ZHANG Jie(College of Aeronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;AECC Commercial Aircraft Engine Co.,Ltd.,Shanghai 201100,China)
出处 《机械制造与自动化》 2021年第6期49-51,共3页 Machine Building & Automation
关键词 时变系统 随机激励 二次调频小波变换 分数阶模糊函数 参数识别 time-varying system random excitation quadratic chirplet transform fractional ambiguity parameter identification
  • 相关文献

参考文献6

二级参考文献54

  • 1刘振峰,郝天珧,范国章.沉积旋回的地球物理研究[J].石油实验地质,2004,26(3):258-262. 被引量:18
  • 2程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 3韩其玉.地震信号时频域表示[J].石油大学学报(自然科学版),1994,18(3):26-30. 被引量:8
  • 4庞世伟,于开平,邹经湘.识别时变结构模态参数的改进子空间方法[J].应用力学学报,2005,22(2):184-188. 被引量:24
  • 5Zhao Yunxin, Les E At- las, Robert J Marks. The use of cone-shaped kernels for generalized timefrequency representation of nonstationary signals [J]. IEEE Trans. On ASSP, 1990, 38 (7): 1084 - 1091.
  • 6Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [J]. Proe. R. Soe. Lond. A, 1998, 454 : 903 - 994.
  • 7Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum [ J]. Annu. Rev. Fluid Mech., 1999, 31:417-455.
  • 8Loh C H, Wu T C, Huaug N E. Application of the empirical mode decomposition - Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response [ J]. Bulletin of the Seismological Society of American, 2001, 91(5): 1339-1352.
  • 9Marcus D, Torsten S. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves [ J ]. Ocean Engineering, 2004, 31 ( 14 - 15) : 1783 - 1834.
  • 10Smith J S. The local mean decomposition and its application to EEG perception data [ J ]. Journal of the Royal Society Interface, 2005, 2 (5) : 443 - 454.

共引文献180

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部