期刊文献+

基于频繁项挖掘的贝叶斯网络结构学习算法BNSL-FIM 被引量:6

BNSL-FIM:Bayesian network structure learning algorithm based on frequent item mining
下载PDF
导出
摘要 贝叶斯网络能够表示不确定知识并进行推理计算表达,但由于实际样本数据存在噪声和大小限制以及网络空间搜索的复杂性,贝叶斯网络结构学习始终会存在一定的误差。为了提高贝叶斯网络结构学习的准确度,提出了以最大频繁项集和关联规则分析结果为先验知识的贝叶斯网络结构学习算法BNSL-FIM。首先从数据中挖掘出最大频繁项集并对该项集进行结构学习,之后使用关联规则分析结果对其进行校正,从而确定基于频繁项挖掘和关联规则分析的先验知识。然后提出一种融合先验知识的BDeu评分算法进行贝叶斯网络结构学习。最后在6个公开标准的数据集上开展了实验,并对比引入先验/不引入先验的结构与原始网络结构的汉明距离,结果表明所提算法与未引入先验的BDeu评分算法相比显著提高了贝叶斯网络结构学习的准确度。 Bayesian networks can represent uncertain knowledge and perform inferential computational expressions,but due to the noise and size limitations of actual sample data and the complexity of network space search,Bayesian network structure learning will always have certain errors.To improve the accuracy of Bayesian network structure learning,a Bayesian network structure learning algorithm with the results of maximum frequent itemset and association rule analysis as the prior knowledge was proposed,namely BNSL-FIM(Bayesian Network Structure Learning algorithm based on Frequent Item Mining).Firstly,the maximum frequent itemset was mined from data and the structure learning was performed on the itemset,then the association rule analysis results were used to correct it,thereby determining the prior knowledge based on frequent item mining and association rule analysis.Secondly,a Bayesian Dirichlet equivalent uniform(BDeu)scoring algorithm was proposed combining with prior knowledge for Bayesian network structure learning.Finally,experiments were carried out on 6 public standard datasets to compare the Hamming distance between the structure with/without prior and the original network structure.The results show that the proposed algorithm can effectively improve the structure learning accuracy of Bayesian network compared to the original BDue scoring algorithm.
作者 李昡熠 周鋆 LI Xuanyi;ZHOU Yun(College of Systems Engineering,National University of Defense Technology,Changsha Hunan 410003,China;Science and Technology on Information Systems Engineering Laboratory,National University of Defense Technology,Changsha Hunan 410073,China)
出处 《计算机应用》 CSCD 北大核心 2021年第12期3475-3479,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61703416) 长沙市杰出创新青年培养计划项目(KQ2009009)。
关键词 贝叶斯网络 结构学习 关联规则分析 APRIORI算法 BDeu评分 Bayesian network structure learning association rule analysis Apriori algorithm Bayesian Dirichlet equivalent uniform(BDeu)score
  • 相关文献

参考文献1

二级参考文献7

  • 1冯洁,陶宏才.快速挖掘最大频繁项集[J].微电子学与计算机,2007,24(5):123-126. 被引量:12
  • 2Pearl J. Fusion, propagation and structuring in belief network[J].Artificial Intelligence, 1986(29) :241 - 288.
  • 3Helge Langseth, Thomas D Nielsen. Fusion of domain knowledge with data for structural learning in object oriented domains [J ]. Journal of Machine Learning Research, 2003(4) ; 339 - 368.
  • 4Niculescu R S, Tom M Mitchell, Bharat Rao R. Bayesian network learning with parameter constraints[J ]. Journal of Machine Learning Research, 2006(7) : 1357 - 1383.
  • 5Clement Faure, Sylvie Delprat, Jean-Francois Boulicaut. Alain mille iterative bayesian network implementation by using annotated association rules[ C]//EKAW2006, LNAI 4248. Lyon, 2006:326- 333.
  • 6Friedman N. The bayesian structural EM algorithm[ C]// Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, 1998:129- 138.
  • 7李雪,龚龙庆.基于贝叶斯网络的证据目标模型及推理算法研究[J].微电子学与计算机,2007,24(8):149-151. 被引量:2

共引文献2

同被引文献32

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部