期刊文献+

面向数据排名的可视分析方法综述 被引量:3

A Survey on the Visual Analytics for Data Ranking
下载PDF
导出
摘要 根据属性关键字的大小对数据对象进行排名,能够帮助用户快速而精准地判断和决策.文中对面向数据排名的可视分析进行综述.首先从映射表示大小关系的视觉元素出发,介绍坐标轴位置、长度、角度、面积和亮度/饱和度等视觉元素在排名可视化过程中的设计与应用;然后从数据结构形式出发,介绍多维、时序、空间和拓扑等面向数据排名的可视分析方法;再概述面向数据排名的可视分析技术在经济金融、城市交通和文体传媒等领域的应用研究;最后总结面向数据排名的可视分析面临的挑战,并对未来工作进行了展望. Ranking is a popular and universal approach to sort items based on the value of its attributes,which can make judicious and informed decisions effectively.This paper reviews the related research on the visual analysis for data ranking.Firstly,the design and application of visual elements such as coordinate axis location,length,angle,area and brightness/saturation from the perspective of visual element mapping is introduced.Secondly,with different structural forms of data for ranking,an overview of the advanced technologies and methods with respect to multidimensional,temporal,spatial and topological features is proposed.Furthermore,applications of ranking visual analysis in the human economy,urban traffic,culture,sports and entertainment are investigated.Finally,the challenges and future developments of ranking visualization are prospected.
作者 周志光 程奥圣 朱申吉 李国俊 梅晓蔚 Zhou Zhiguang;Cheng Aosheng;Zhu Shenji;Li Guojun;Mei Xiaowei(School of Information Management and Artificial Intelligence,Zhejiang University of Finance and Economics,Hangzhou 310018;State Key Laboratory of CAD&CG,Zhejiang University,Hangzhou 310058)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第12期1830-1840,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61872314) 教育部人文社会科学研究项目(18YJC910017) 浙江省高校重大人文社科攻关计划(2018QN021) 浙江省科技厅公益项目(LGF20F020010,LGF20G010003) 浙江省自然科学基金(LY18F020024) 浙江大学CAD&CG国家重点实验室开放课题(A2001).
关键词 排名规则 排名可视化 可视分析 交互式排名 ranking techniques ranking visualization visual analytic interactive ranking
  • 相关文献

参考文献2

二级参考文献36

  • 1Statistical communique of telecommunication industry development in china. Technical report, 2008.
  • 2Liu S, Chen L, Ni L M, Fan J. CIM: categorical influence maximiza.tion. In: Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication (ICUIMC), 2011,124.
  • 3Liu S, Liu Y, Ni L M, Fan J, Li M. Towards mobility-based clustering.In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, 919-928.
  • 4Chen C. Top 10 unsolved information visualization problems. Com.puter Graphics and Applications, IEEE, 2005, 25(4): 12-16.
  • 5Keim D, Mansmann F, Schneidewind J, Ziegler H. Challenges in visual data analysis. In: Proceedings of the 10th International Conference on. Information Visualization, 2006, 9-16.
  • 6Card S K, Mackinlay J D, Shneiderman B, et al. Readings in Infor.mation Visualization: Using Vision to Think. San Francisco: Morgan Kaufmann Publishers Inc., 1999.
  • 7Treisman A. Preattentive processing in vision. Computer Vision, Graphics and Image Processing, 1985,31(2): 156-177.
  • 8Ware C. Information Visualization: Perception for Design. San Fran.cisco: Morgan Kaufmann Publishers Inc., 2004.
  • 9Ratti C, Pulselli R M, Williams S, Frenchman D. Mobile landscapes: using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 2006, 33(5): 727-748.
  • 10Calabrese F, Ratti C. Real time rome. Networks and Communication Studies, 2006, 20: 247-258.

共引文献2

同被引文献29

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部