期刊文献+

Single-source-precursor synthesis of porous W-containing SiC-based nanocomposites as hydrogen evolution reaction electrocatalysts 被引量:1

原文传递
导出
摘要 In this paper,W-containing SiC-based ceramic nanocomposites were successfully prepared by a polymer-derived ceramic approach using allylhydridopolycarbosilane(AHPCS)as a SiC source,WC16 as a tungsten source,polystyrene(PS)as a pore forming agent as well as divinyl benzene(DVB)as a carbon rich source.High-temperature phase behavior of the W-containing SiC-based ceramics after heat treatment was studied,showing that excessive DVB content in the feed will inhibit the crystallinity of W-containing nanoparticles in the final ceramic nanocomposites.The high specific surface area(SSA)of 169.4-276.9 m^(2)/g can be maintained even at high temperature in the range of 1400-1500℃,due to the carbothermal reaction which usually occurs between 1300 and 1400℃.All prepared W-containing SiC-based nanocomposites reveal electrocatalytic activity for the hydrogen evolution reaction(HER).In detail,compared with reversible hydrogen electrode(RHE),the ceramic sample PWA-2-1300 after heat treatment at 1300℃ has the smallest overpotential of 286 mV when the current density is 10 mA·cm^(-2) in acid medium,indicating the promising perspective in the water splitting field.
出处 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1338-1349,共12页 先进陶瓷(英文)
基金 the National Natural Science Foundation of China(Nos.51872246 and 52061135102)for financial support.
  • 相关文献

参考文献4

二级参考文献9

共引文献18

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部