期刊文献+

基于拼写器的脑电信号分析和判别模型研究 被引量:1

Research on EEG Signal Analysis and Discriminative Model for Speller
原文传递
导出
摘要 针对P300拼写器中信息传输和目标分类的性能问题,提出了脑功能网络和多模型融合的脑电信号处理方式.首先,对原始信号进行独立成分分析、最佳滤波频带选择及数据分段等预处理操作去除信号中的伪迹噪声.其次,针对原始脑电数据冗余问题,引入了脑功能网络模型对通道敏感度进行分析,仅选择部分通道数据,在不降低分类准确率的情况下,提高信息传输速率,减少目标字符识别所需轮次.最后,针对脑电信号分类问题,提出了基于随机森林和支持向量机的融合模型,通过引入权重和投票机制,根据多个模型投票的结果选择目标字符,提高分类准确率.实验表明,研究结果可以为基于拼写器的脑电信号分析提供一定的理论支持. In this paper,we propose a brain function network and multi-model fusion for EEG signal processing to address the performance problems of information transmission and target classification in P300 speller.First,the original signal is pre-processed with independent component analysis,optimal filtering band selection and data segmentation to remove artifact noise from the signal.Secondly,to address the redundancy problem of the original EEG data,a brain functional network model is introduced to analyze the channel sensitivity and select only some of the channel data to improve the information transmission rate and reduce the number of rounds required for target character recognition without reducing the classification accuracy.Finally,a fusion model based on random forest and support vector machine is proposed for the EEG signal classification problem.By using a weighting and voting mechanism,the target characters are selected based on the results of multiple model voting to improve the classification accuracy.The experiments show that the results of this paper can provide theoretical support for the analysis of EEG signals for speller.
作者 章杭奎 徐森威 胡宏洋 ZHANG Hang-kui;XU Sen-wei;HU Hong-yang(School of Computer Science,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《数学的实践与认识》 2021年第23期179-187,共9页 Mathematics in Practice and Theory
基金 国家重点研发计划基金(2017YFE0116800) 国家自然科学基金(U20B2074,U1909202) 浙江省重点研发计划资助项目(2018C04012)
关键词 脑电信号 独立成分分析 脑功能网络 融合模型 EEG signals independent component analysis brain function network fusion model
  • 相关文献

参考文献3

二级参考文献14

  • 1Koles Z J. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG[J].Electroencephalography and Clinical Neurophysiology , 1991,79(6) :440 - 447,.
  • 2Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 (5) :787 - 798.
  • 3Ramoser H, Miiller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8 (4) : 441 - 446.
  • 4Novi Q, Guan C, Dat T H, et al. Sub-band common spatial pattern ( SBCSP ) for brain-computer interface [ C ]//3rd International IEEE/EMBS Conference on Neural Engineering. [S. 1. ] : IEEE, 2007 : 204 - 207.
  • 5Li Y, Gao X, Liu H, et al. Classification of single-trial electroencephalogram during finger movement [ J 3. IEEE Transactions on Biomedical Engineering, 2004,51 (6) : 1019 - 1025.
  • 6Chang C C, Lin C J. LIBSVM: a library for support vector machines[ EB/OL ]. [ 2009 - 04 - 17 ]. http://www, csie. ntu. edu. tw/-cjlin/libsvm.
  • 7Schlogl A, Keinrath C, Scherer R, et al. Information transfer of an EEG-based brain computer interface[ C]//1st International IEEE/EMBS Conference on Neural Engineering. [S. l. ] : IEEE, 2003 : 164 - 173.
  • 8Schlogl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based brain-computer interface[J].Biomed Technik, 2002,47(1/2) :3 - 8.
  • 9张胜,王蔚.基于CSSD和SVM的抑郁症脑电信号分类[J].中国生物医学工程学报,2008,27(6):827-831. 被引量:3
  • 10李明爱,刘净瑜,郝冬梅.基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报,2009,28(2):161-165. 被引量:38

共引文献59

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部