期刊文献+

面向康复工程的脑电信号分析和判别方法研究

Research on EEG Signal Analysis and Discrimination Method For Rehabilitation Engineering
原文传递
导出
摘要 为提高脑电信号的分析和判别的准确率,利用数据挖掘的方法对数据进行处理,并建立脑电信号判别模型.首先,对P300信号标志符进行识别,完成对脑电信号的数据预处理,利用经验模态分解方法(Empirical Mode Decomposition,EMD)降低噪声去除伪迹,使用主成分分析方法(Principal Component Analysis,PCA)进行特征提取.然后,采用合成少数类过采样技术方法(Synthetic Minority Oversampling Technique,SMOTE)扩充样本使正负样本数量达到均衡.最后,采用支持向量机方法(Support Vector Machine,SVM)建立二分类模型完成对P300信号标识符进行识别.经运行结果可追,SMOTE改进的分类模型结果精度都有所改进,准确性有明显提高,能准确识别P300信号标识符. In order to improve the accuracy of EEG analysis and discrimination,data mining method is used to process the data,and EEG discrimination model is established.Firstly,P300 signal markers are identified,and the data preprocessing of EEG signals is completed.Empirical Mode Decomposition(EMD)is used to reduce noise and remove artifacts,and Principal Component Analysis(PCA)is used to extract features.Then,the synthetic minority over sampling technique(SMOTE)is used to expand the samples to balance the number of positive and negative samples.At last,Support Vector Machine(SVM)is used to establish a two-class model to complete the identification of P300 signal identifiers.The running results can be traced.SMOTE's improved classification model has improved the accuracy and accuracy,and can accurately identify P300 signal identifiers.
作者 陈昱君 孙樊荣 姚远 顾明昕 沐瑶 许学吉 CHEN Yu-jun;SUN Fan-rong;YAO Yuan;GU Ming-xin;MU Yao;XU Xue-ji(Civil Aviation College,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)
出处 《数学的实践与认识》 2021年第23期197-204,共8页 Mathematics in Practice and Theory
关键词 EEG信号 脑电信号判别 PCA SMOTE SVM EEG EEG signal discrimination PCA SMOTE SVM
  • 相关文献

参考文献6

二级参考文献31

  • 1何伟,陈良迟,徐晓红,谢正祥.心电信号及各组分的频率分布和有效带宽研究[J].生物医学工程学杂志,1996,13(4):336-340. 被引量:25
  • 2毕路拯,张然,高原,吴平东.基于认知任务的脑机接口方法研究[J].计算机工程,2007,33(1):190-192. 被引量:3
  • 3杨福生.独立分量分析及其在生物医学工程中的应用.99'中国生物医学电子学学术年会论文集[M].南京:-,.34-37.
  • 4吴小培 冯焕清 等.独立分量分析在脑电信号预处理中的应用[J].北京生物医学工程,2000,19(3):201-205.
  • 5Kaper M. Support Vector Machines for the P300 Speller Paradigm[J]. IEEE Trans. on Biomedical Engineering, 2004, 51 (6): 1073-1076.
  • 6MartinezJ P, Almeida R, Olmos S, et al. A wavelet-based ECG delineator: evaluation on standard databases [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(4): 570-581.
  • 7Kania M, Fereniec M, Maniewski R. Wavelet denoising for multi-lead high resolution ECG signals [J]. Measurement Science Review, 2007, 7(2): 30- 33.
  • 8Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc R Soc Lond, 2004, 460: 1597- 1611.
  • 9Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1-41.
  • 10Lei Y G, He Z J, Zi Y Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery [J]. Mechanical Systems and Signal Processing, 2009, 23 (4): 1327-1338.

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部