期刊文献+

Planning and Real-time Pricing of EV Charging Stations Considering Social Welfare and Profitability Balance

原文传递
导出
摘要 This paper presents a planning and real-time pricing approach for EV charging stations(CSs).The approach takes the form of a bi-level model to fully consider the interest of both the government and EV charging station operators in the planning process.From the perspective of maximizing social welfare,the government acts as the decision-maker of the upper level that optimizes the charging price matrix,and uses it as a transfer variable to indirectly influence the decisions of the lower level operators.Then each operator at the lower level determines their scale according to the goal of maximizing their own revenue,and feeds the scale matrix back to the upper level.A Logit model is applied to predict the drivers’preference when selecting a CS.Furthermore,an improved particle swarm optimization(PSO)with the utilization of a penalty function is introduced to solve the nonlinear nonconvex bi-level model.The paper applies the proposed Bi-level planning model to a singlecenter small/medium-sized city with three scenarios to evaluate its performance,including the equipment utilization rate,payback period,traffic attraction ability,etc.The result verifies that the model performs very well in typical CS distribution scenarios with a reasonable station payback period(average 6.5 years),and relatively high equipment utilization rate,44.32%.
出处 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第6期1289-1301,共13页 中国电机工程学会电力与能源系统学报(英文)
基金 supported by the National Natural Science Foundation of China under Grant 51807024。
  • 相关文献

参考文献2

二级参考文献14

  • 1Colson B, Marcotte P, Savard G. An overview of bilevel optimization[J]. Annals of Operations Research, 2007, 153(1): 235-256.
  • 2Andreani R, Castro S L C, ChelaJ L, et al. An inexact-restoration method for nonlinear bilevel programming problems[J]. Computational Optimization and Applications, 2009, 43(7): 307-328.
  • 3Colson B, Marcotte P, Savard G. Bilevel programming: A survey[J]. A QuarterlyJournal of Operation Research (40R), 2005,3(2): 87-107.
  • 4Dempe S, Kalashnikov V, Kalashnykova N. Optimality conditions for bilevel programming problems[J]. Springer Optimization and Its Applications, 2006, 2(1): 3-28.
  • 5Yang X H, Yang Z F, Yin X, et al. Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(8): 1676-1688.
  • 6ChenJ J, Yang X H. Optimal parameter estimation for Muskingum model based on gray-encoded accelerating genetic algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(5): 849-858.
  • 7Yang X H, Yang Z F, Lu G H, et al. A gray-encoded, hybrid-accelerated, genetic algorithm for global optimiza?tions in dynamical systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10(4): 355-363.
  • 8Andreani R, Castro S L C, ChelaJ L, et al. An inexact-restoration method for nonlinear bilevel programming problems[J]. Computational Optimization and Applications, 2009, 43(3): 307-328.
  • 9Clerc M, KennedyJ. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
  • 10Arora S R, Gupta R. Interactive fuzzy goal programming approach for bilevel programming problem[J]. EuropeanJournal of Operational Research, 2009, 194(2): 368-376.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部