期刊文献+

高超声速典型弹道下的壁板热气动弹性动力学分析 被引量:5

Dynamics analysis of panel aerothermoelasticity in typical hypersonic trajectories
原文传递
导出
摘要 对高超声速流中带有热防护系统(TPS)的二维壁板进行了热气动弹性的双向耦合建模与分析,采用三阶活塞理论计算气动力,通过参考焓法获得气动热流,在有限差分法的基础上进行结构热传导计算,拟合了结构材料特性随温度退化的曲线,最后将气动热模块、气动弹性模块进行双向耦合以考虑气动热与结构形变之间的相互反馈,并在2种典型弹道状态下进行热气动弹性响应分析。结果表明,在X-34A的设计弹道下,双向耦合分析会引起更加剧烈的热应力与热弯矩的变化与较长的瞬态混沌过程。在FALCON弹道下,双向耦合得到的结果加热更为剧烈,而温度下降的过程也更快。对比2种弹道发现,长时间的高超声速飞行更容易引发颤振,而机动性较强的弹道面临的主要问题则是屈曲,需要考虑材料的应力及强度特性。同时说明了双向耦合策略对于现代飞行器在弹道状态下工作的热气弹响应分析的必要性。 This study builds a two-way coupling model of aerothermoelasticity for two-dimensional panels with TPS in hypersonic flow. The aerodynamic force is calculated by the third-order piston theory, the aerodynamic heat obtained by the Eckert’s reference enthalpy method, and the heat transfer carried out on the basis of the finite difference method, with the material properties of the structure fitted with temperature degradation. Finally, the aerothermal module and the aeroelastic module are two-way coupled considering the effect of panel deflection on aerodynamic heat flux, and the aerothermoelastic analysis is conducted in two typical trajectories. The results show that the two-way coupling analysis would cause more severe changes in thermal stress and thermal bending moment, leading to a longer transient chaos for the X-43 A trajectory. In the FALCON trajectory, with the two-way coupling, the aerodynamic heating is more intense with a faster temperature drop. Comparison of the two trajectories demonstrates that long-term hypersonic flights are more likely to cause flutter. However, the main problem faced by stronger maneuverability trajectories is buckling, and the strength characteristics of the material need to be considered. Furthermore, it illustrates the necessity of two-way coupling analysis to accurately obtain the aerothermoelastic response of modern aircraft under trajectory conditions.
作者 谢丹 冀春秀 景兴建 XIE Dan;JI Chunxiu;JING Xingjian(School of Astronautics,Shaanxi Key Laboratory of Aerospace Flight Vehicle Design,Northwestern Polytechnical University,Xi'an 710072,China;Department of Mechanical Engineering,Hong Kong Polytechnic University,Hong Kong 999077,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2021年第11期368-383,共16页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11972294) 陕西省自然科学基金(2020JQ-128)。
关键词 高超声速 热气动弹性 壁板颤振 双向耦合 典型弹道 hypersonic aerothermoelasticity panel flutter two-way coupling typical trajectories
  • 相关文献

参考文献3

二级参考文献53

  • 1范晓樯,贾地,潘沙,李桦.源项法模拟高超声速飞行器内外一体化流场[J].推进技术,2005,26(5):385-388. 被引量:3
  • 2梁德旺,袁化成,张晓嘉.影响高超声速进气道起动能力的因素分析[J].宇航学报,2006,27(4):714-719. 被引量:50
  • 3贺元元,乐嘉陵,倪鸿礼.吸气式高超声速机体/推进一体化飞行器数值和试验研究[J].实验流体力学,2007,21(2):29-34. 被引量:20
  • 4Air Force Space Command,Strategic Master Plan FY06 and Beyond, [R/OL]. 1 October 2003, p3. http://www. wslf-web. org/docs/Final% 2006% 20SMP-Signed! vl. pdf.
  • 5Matthew Hoey. Military Space Systems: The Road Ahead[ R/OL ]. Feburary 27, 2006. http://www. thespacereview. com/article/563/1.
  • 6Jeremy Noel. Transforming the National Spacelift Architecture[ C ]//18 Mar 2004 ( 2000 ) version, AIAA, 2nd Responsive Space Conference,RS2-2004-2003.
  • 7Jess Sponable. Military Spaceplane Technologies and Flight Demonstration Opportunities [ C ]//Focus Area Lead Space Access & Future Strike for The CORE Technologies Conference, Air Vehicles Directorate Air Force Research Laboratory,21 November 2002.
  • 8The U. S. Air Force Transformation Flight Plan,November 2003 [ R/OL ]. http://www. af. mil/library/posture/AF_TRANS_FLIGHT_PLAN-2003. pdf.
  • 9Livingston Holder. A New Vision for Operationally Responsive Space and Force Projection [ C ]//DARPA, ANDREWS Space. http://www. responsivespace. com Conferences/RS2/RSC2-schedule-041404. pdf
  • 10Terry Phillips, Bob O' Leafy. Common Aero Vehicle (CAV) on Orbit[ R.]. 6 September 2003, Schafer Corporation, Government Military Space Documents

共引文献13

同被引文献166

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部